
860 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Streaming Erasure Codes Over Multi-Access
Relayed Networks

Gustavo Kasper Facenda , Graduate Student Member, IEEE, Elad Domanovitz , Member, IEEE,

Ashish Khisti , Member, IEEE, Wai-Tian Tan, and John Apostolopoulos, Fellow, IEEE

Abstract— Many emerging multimedia streaming applications
involve multiple users communicating under strict latency con-
straints. In this paper we study streaming codes for a network
involving two source nodes, one relay node and a destination
node. In this paper’s setting, each source node transmits a stream
of messages, through the relay, to a destination, who is required
to decode the messages under a strict delay constraint. For
the case of a single source node, a class of streaming codes
has been proposed by Fong et al., using the concept of delay-
spectrum. The current paper presents a novel framework, which
constructs streaming codes for a relayed multi-user setting by
sequentially constructing the codes for each link. This requires
a characterization of the set of all achievable delay spectra for
a given rate, blocklength and number of erasures, beyond the
specific choice considered by Fong et al. This characterization
is presented in the paper for systematic codes. Using this novel
framework, the first proposed scheme involves greedily selecting
the rate on the link from relay to destination and using properties
of the delay-spectrum to find feasible streaming codes that satisfy
the required delay constraints. A closed form expression for the
achievable rate region is provided, and conditions for when the
proposed scheme is optimal are established by a natural outer
bound. The second proposed scheme builds upon this approach,
but uses a numerical optimization-based approach to improve the
achievable rate region over the first scheme. Experimental results
show that the proposed schemes achieve significant improvements
over baseline schemes based on single-user codes.

Index Terms— Cloud computing, streaming, low-latency,
symbol-wise decode-and-forward, multi-access relay network,
forward error correction, packet erasure channel, rate region.

I. INTRODUCTION

ANUMBER of emerging applications including online
real-time gaming, real-time video streaming (video con-

ference with multiple users), healthcare (under the name tactile
internet), and general augmented reality require efficient low-
latency communication. In these applications, data packets are

Manuscript received 3 September 2021; revised 7 June 2022; accepted
26 September 2022. Date of publication 12 October 2022; date of cur-
rent version 20 January 2023. An earlier version of this paper was
presented at the 2021 IEEE International Symposium on Information
Theory [DOI: 10.1109/ISIT45174.2021.9518192]. (Corresponding author:
Gustavo Kasper Facenda.)

Gustavo Kasper Facenda, Elad Domanovitz, and Ashish Khisti are
with the Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: gustavo.
k.facenda@gmail.com).

Wai-Tian Tan and John Apostolopoulos were with Enterprise Networking
Innovation Labs, Cisco Systems, San Jose, CA 95134 USA, and also with
Google, Mountain View, CA 94043 USA.

Communicated by R. D. Wesel, Associate Editor for Coding and Decoding.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2022.3214165.
Digital Object Identifier 10.1109/TIT.2022.3214165

generated at the source in a sequential fashion and must be
transmitted to the destination under strict latency constraints.
When packets are lost over the network, significant amount
of error propagation can occur and suitable methods for error
correction are necessary.

There are two main approaches for error correction due to
packet losses in communication networks: Automatic repeat
request (ARQ) and Forward error correction (FEC). ARQ is
not suitable when considering low latency constraints over
long distances, as the round-trip time may be larger than
the required delay constraint. For that reason, FEC schemes
are considered more appropriate candidates. The literature has
studied codes with strict decoding-delay constraints—called
streaming codes—in order to establish fundamental limits of
reliable low-latency communication under a variety of packet-
loss models. Previous works have studied particular, useful
cases. In [3], the authors studied a point-to-point (i.e., two
nodes—source and destination) network under a maximal burst
erasure pattern. In [4], the authors have studied, separately,
burst erasures and arbitrary erasures. In [5], the authors
have extended the erasure pattern, allowing for both burst
erasures and arbitrary erasures. In particular, it was shown
that random linear codes [6] are optimal if we are concerned
only with correcting arbitrary erasures. Other works that have
further studied various aspects of low-latency streaming codes
include [7], [8], [9], [10], [11], [12], [13], [14], [15].

While most of the prior work on streaming codes has
focused on a point-to-point communication link, a network
topology that is of practical interest involves a relay node
between source and destination, that is, a three-node network.
This topology is motivated by numerous applications in which
a gateway server, able to decode and encode data, connects two
end nodes. Motivated by such considerations, streaming codes
for such a setting were first introduced in Fong et al. [2], which
derived the time-invariant capacity for the three-node setting,
and further extended to a multi-hop network in [16]. A time-
variant adaptive code construction has been studied in [17]
and shown to improve upon the rate of [2].

The relayed setting is challenging because, under strict
delay constraints, such as in the streaming applications men-
tioned, it is not trivial to design the operations that the relay
should perform. Naive operations, such as direct-forwarding
or packet-level decode-and-forward (where the relay decodes
entire source packets and then re-encodes them) are shown
to be sub-optimal in [2]. As an improvement to these naive
strategies, the authors propose a transmission scheme denoted

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0503-9089
https://orcid.org/0000-0002-2331-8965
https://orcid.org/0000-0002-5439-1348

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 861

as symbol-wise decode-and-forward, in which the relay
decodes symbols, rather than packets, and then re-encodes
them in a judicious manner to satisfy the overall delay
constraint. From this idea, the authors naturally present the
concept of delay-spectrum, which, at high level, represents
the delay that each symbol is subject to, rather than the delay
the packet is subject to, when the channel introduces erasures.
In the paper, the authors propose one specific family of codes,
and present the delay spectrum for such codes. These codes
have a uniform delay spectrum, that is, an equal number of
symbols is recovered at each feasible delay. The authors show
that this family of codes is sufficient for the single-user relayed
setting in order to achieve non-adaptive (or time-invariant)
optimality.

In our paper, we wish to extend the relayed topology of [2]
to a multiple access relay channel. This is motivated by the fact
that a significant part of the mentioned applications, such as
real-time gaming and video conferences, involve communica-
tions between multiple users and a common server. However,
this addition of more users in the network brings new chal-
lenges. First, again, the correct operations that the relay should
perform are not clear. Naive extensions, such as employing
single-user codes for each user, and then multiplexing them at
the relay, treating them as independent streams, or decoding
the source packets from both users and then re-encoding
them jointly, are sub-optimal. Therefore, a way of judiciously
jointly encoding the packets from each user at the relay,
while satisfying the overall delay constraint of both users,
is required. Furthermore, the simple family of codes used
in the previous work is no longer sufficient, because codes
with non-uniform delay spectra are now required. Intuitively,
this is because the channels from each user to the relay
may be different, which is modeled by a different number of
erasures in each link, which will cause different numbers of
symbols arriving with each delay at the relay. Because of these
reasons, a more detailed analysis of the delay spectrum must
be performed, and we must develop a deeper understanding
of how the code employed in one link is constrained by
the codes employed in other links of the network. We first
answer these questions, and then we show how this knowledge
can be used to build an elegant framework for sequentially
constructing codes in multi-user networks through a delay-
spectrum-constrained code construction.

Similar to the work in [2], we focus in time-invariant
streaming codes, i.e., the relay node does not change the
FEC code as a function of erasures on the source-relay link.
This is in contrast to the approach in [16] and [17]. This
choice is motivated by a variety of reasons, including: no
optimal adaptive codes are known for the single-user setting;
the known achievable adaptive codes [17] for the single-user
setting require overheads in order to inform the destination
about the erasure pattern from source to relay; in an adaptive
code, the delay pattern from source to relay depends on the
observed erasure pattern, thus, when generalizing to multiple
users, one must take into account numerous possible erasure
patterns happening in each link from source to relay, making
a general framework hard to design, and analysis extremely
complex; for the previous reason, the computational complex-

ity at the relay may also be impractical for such schemes.
Although we focus on the setting with two source nodes in
this paper, it should be noted that the proposed framework and
the converse can be directly extended to multiple source nodes,
although the expressions become notationally cumbersome.

A. Related Works and Applications

From a problem formulation perspective, our work is
strongly connected to previous works on streaming codes over
adversarial channels such as [3], [4], [5], [14], [15]. These
works use a problem formulation similar to ours, in which an
error-free transmission is desired with a strict delay constraint.
Works such as [18] study the adaptation of random linear
codes in order to provide better performances in dynamic
channels, that is, in scenarios where the channel conditions
change over time. However, none of these works consider a
multi-access setting.

From a setting perspective, many applications benefit from
a smaller latency. For example, cloud (or stream) gaming is an
application in which the heavy processing of gaming, such as
physics computation and rendering, are performed in a cloud
server, which then streams the video output to the player, who
in turn performs actions which are streamed back to the server.
The impact of latency on the user experience and performance
on cloud gaming has been widely studied [19], [20], [21], [22],
[23], [24], [25]. It should be noted that the overall latency is
composed by many different types of delay, including local
processing, propagation, error correction, server processing
and display.

Companies such as Google have put considerable effort in
building their own networks in order to minimize propagation
delay. Riot Games has done similarly, focused on multi-player
online gaming instead of cloud gaming [26]. Networks such
as WTFast are also used by players in order to reduce their
propagation latency and have been evaluated in papers such
as [27]. Here, the delay reduction is achieved by optimized
routing, rather than the longer (cheaper) routes that regular
Internet Service Providers may allocate [26] (often selected to
minimize number of hops, as opposed to minimize latency).

Reducing the server-side processing delay has also been
studied. For example, Google and Microsoft use machine
learning to predict the future inputs from the user [28],
allowing the server processing to happen before it receives
the input, achieving what Google calls “negative latency”.
Optimization of the video encoding for cloud gaming has
also been considered in the literature [29]. Other aspects of
latency such as the local processing and display times are
mostly influenced by the user’s hardware.

On the other hand, the error correcting delay—that
is, the amount of time required in order to recover
from packet losses—seems to be understudied. As shown
in [30], the round-trip-delay for Stadia’s network is usually
between 10 and 15ms. Under a delay constraint of 50ms,
re-transmissions taking 10ms represent a significant portion
of the delay budget. However, by using FEC such as the ones
described in this paper, with packet delays that can be as small
as T = 5 for considerably lossy channels, lost packets can be

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Fig. 1. Multiple access relay channel.

recovered within a few milliseconds, depending on the packet
rate. This is even more significant when considering networks
that are not as optimized as Google’s, where round-trip delays
may be considerably higher.

It should also be mentioned that a setting similar to ours has
been studied in [31], where the authors consider a multi-access
setting in Cloud Gaming, and show that Quality-of-Experience
(QoE) can be improved by jointly optimizing different streams
from different nodes. However, only resource allocation is
optimized in the paper, basing the decision on the different
types of games analyzed. In our work, we instead focus on
optimizing the coding scheme used by the nodes and relay.

II. SYSTEM MODEL AND MAIN RESULTS

In this paper, we consider a network with two sources, one
relay and one destination. Each source i wishes to transmit
a sequence of messages {st,i}∞t=0 to the destination through
a common relay. We assume there is no direct link between
sources and destination. We assume that the link between the
first source and the relay introduces at most N1 erasures, the
link between the second source and the relay introduces at
most N2 erasures, and the link between relay and destination
introduces at most N3 erasures. The destination wishes to
decode both source packets with a common delay T . This
setting is illustrated in Fig. 1. This setting captures many
practical applications, such as multi-party video conferencing,
mentioned previously. Without loss of generality, we assume
N1 ≥ N2.

In the following, we present the formal definitions for
the problem. For simplicity, we define F

n
e = F

n ∪ {∗}.
The following definitions are standard and a straight-forward
generalization of [2].

Definition 1: An (n1, n2, n3, k1, k2, T)F-streaming code
consists of the following:

• Two sequences of source messages {st,1}t=∞
t=0 and

{st,2}t=∞
t=0 , where st,i ∈ F

ki .
• Two encoding functions

ft,i : F
ki × · · · × F

ki� �� �
t+1 times

→ F
ni , i ∈ {1, 2}

each used by its respective source i at time t to generate
x

(1)
t,i = ft,i(s0,i, s1,i, . . . , st,i).

• A relaying function

gt : F
n1
e × · · ·Fn1

e� �� �
t+1 times

×F
n2
e × · · ·Fn2

e� �� �
t+1 times

→ F
n3

used by the relay at time t to generate

x
(2)
t = gt({y(1)

j,1}t
j=0, {y(1)

j,2}t
j=0).

• Two decoding functions

ϕt,1 = F
n3
e × · · · × F

n3
e� �� �

t+T+1 times

→ F
k1

ϕt,2 = F
n3
e × · · · × F

n3
e� �� �

t+T+1 times

→ F
k2

used by the destination at time t + T to generate

ŝt,1 = ϕt,1(y
(2)
0 , y

(2)
1 , . . . , y

(2)
t+T)

ŝt,2 = ϕt,2(y
(2)
0 , y

(2)
1 , . . . , y

(2)
t+T)

Definition 2: An erasure sequence is a binary sequence
denoted by e

(1)
i � {e(1)

t,i }∞t=0, where

e
(1)
t,i = 1{an erasure occurs at time t

in the link from source i to relay}. (1)

Similarly, e(2) � {e(2)
t }∞t=0 where

e
(2)
t = 1{an erasure occurs at time t

in the link from relay to destination} (2)

An N -erasure sequence is an erasure sequence e that
satisfies

�∞
t=0 et = N . In other words, an N -erasure sequence

specifies N arbitrary erasures on the discrete timeline. The set
of N -erasure sequences is denoted by ΩN .

Definition 3: The mapping hn : F
n × {0, 1} → F

n
e of an

erasure channel is defined as

hn(x, e) =

�
x, if e = 0
∗, if e = 1

(3)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 863

For any erasure sequences e
(1)
i and any (n1, n2, n3,

k1, k2, T)F-streaming code, the following input-output relation
holds for each t ∈ Z+:

y
(1)
t,1 = hn1(x

(1)
t,1 , e

(1)
t,1) (4)

y
(1)
t,2 = hn2(x

(1)
t,2 , e

(1)
t,2) (5)

where e
(1)
i ∈ ΩNi , i ∈ {1, 2}. Similarly, the following

input-output relation holds for each t ∈ Z+:

y
(2)
t = hn3(x

(2)
t , e

(2)
t) (6)

where e
(2)
t ∈ ΩN3 .

In this paper, as stated and motivated in Section I, we focus
on streaming codes for which the relaying function gt does
not adapt (change) the FEC code as function of the erasure
pattern that has been observed in the link from sources to
relay. We formally define time-invariant, or channel state
independent codes below.

Definition 4: An (n1, n2, n3, k1, k2, T)F-streaming code is
channel state independent (or time-invariant) if and only if,
given two fixed source sequences {st,1}∞t=0 and {st,2}∞t=0,
the outputs of the encoding and relaying functions of this
streaming code is also fixed, that it, x

(1)
t,1 , x

(1)
t,2 , and x

(2)
t are

independent of the erasure patterns e
(1)
1 and e

(1)
2 .

Definition 5: An (n1, n2, n3, k1, k2, T)F-streaming code is
said to be (N1, N2, N3)-achievable if, for any e

(1)
t,i , i ∈ {1, 2}

and e
(2)
t , for all t ∈ Z+ and all st,i ∈ F

ki , i ∈ {1, 2}, we have
ŝt,i = st,i, i ∈ {1, 2}.

Definition 6: The pair of rates of an (n1, n2, n3, k1,
k2, T)F-streaming code is

R1 =
k1

n

R2 =
k2

n
n = max(n1, n2, n3)

Definition 7: The capacity (rate) region of an (N1, N2, N3)
multi-access relay network under delay constraint T is defined
as the set of all rate pairs (R1, R2) such that there exists
an (N1, N2, N3)-achievable (n1, n2, n3, k1, k2, T)F-streaming
code, where (R1, R2) are defined as above.

For the remaining of the paper, when discussing the capacity
region, we are referring to the capacity region of channel-state
independent (time invariant) codes.

In this paper, for analysis purposes, we define four different
regimes of operation based on the parameters N1, N2, N3 and
T . Let C(T, N) = T+1−N

T+1 denote the point-to-point capacity
of streaming codes. As will be seen in Section III, the rate
of the first user is bounded by R1 ≤ C(T − N3, N1), the
rate of the second user is bounded by R2 ≤ C(T − N3, N2)
and the sumrate is bounded by R1 + R2 ≤ C(T − N2, N3),
assuming N1 ≥ N2 without loss of generality. Based on these
three bounds, we define our four regimes of operation.

First, we separate the regimes based on the sumrate bottle-
neck. If C(T −N2, N3) > C(T −N3, N1)+ C(T −N3, N2),
then the sumrate constraint is active for at least one rate

pair, and we denote the regime as “source-relay bottleneck”.
Otherwise, we denote it as “relay-destination bottleneck”.

Further, we classify each regime based on how “strong”
the bottleneck is. For the source-relay bottleneck regimes,
we denote it as “strong” bottleneck if we also have C(T −
N1, N3) ≥ C(T − N3, N1) + C(T − N3, N2). This regime
represents a scenario where the channel condition in the link
from relay to destination is significantly better than both links
from sources to relay. If this condition does not hold, then we
denote it as a “weak” bottleneck.

For the relay-destination regimes, the link from relay to
destination acts as a bottleneck, and the users can not simul-
taneously transmit at their single-user capacity. In this case,
if N2 ≥ N3, we denote it as a “weak” bottleneck, and if
N3 > N2, we denote it as a “strong” bottleneck.

Below, we summarize each regime based on the conditions
stated above.

• Strong source-relay bottleneck: C(T −N1, N3) ≥ C(T −
N3, N1) + C(T − N3, N2).

• Weak source-relay bottleneck: C(T −N2, N3) ≥ C(T −
N3, N1) + C(T − N3, N2) > C(T − N1, N3).

• Weak relay-destination bottleneck: C(T − N3, N1) +
C(T − N3, N2) ≥ C(T − N2, N3) > C(T − N3, N2).

• Strong relay-destination bottleneck: C(T − N3, N1) ≤
C(T − N2, N3) ≤ C(T − N3, N2).

For most of the paper, we focus on the Weak
Relay-Destination Bottleneck regime. In Section VII we
analyze the remaining regimes.

A. Main Contributions
In this paper, we derive upper and lower bounds to the

capacity region of streaming codes in the described setting.
Strict delay constraints are relevant in low latency applications,
while the adversarial model represents worst-case scenarios,
which are commonly of interest in such applications. For
presentation, we split this section in three subsections, each
one focused on a main contribution of the paper.

1) Upper Bound: The first result we present in the paper is
a general upper bound for the capacity region

Theorem 1: The capacity region of time-invariant streaming
codes for the four-node multi-access relayed network is upper
bounded by the following three conditions

R1 ≤ C(T − N3, N1) (7)

R2 ≤ C(T − N3, N2) (8)

R1 + R2 ≤ C(T − N2, N3) (9)

where C(T, N) = T+1−N
T+1 is the capacity of a point-to-point

channel subject to N erasures and strict delay T .
In order to do so, we first properly define “time invariant”,

or “channel state independent” streaming codes, and then we
prove, from first principles, that the upper bound holds for said
codes. While the arguments presented are based on the ones
previously presented in [2], the prior work failed to consider
channel state dependent codes, which can achieve rates higher
than this bound, as shown in [17]. In our proof, we highlight
where the channel state independent assumption is required,
which was missed in the previous paper. This is an important

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

contribution, as it shows that the bound is still valid for a
limited family of codes, which are of interest for reasons
discussed in Section I.

2) Delay Spectrum Analysis: As another main contribution,
in Section IV, we present an in-depth analysis of the concept of
delay-spectrum. At high level, the delay spectrum maps each
transmitted symbol to a delay. Consider a scenario where we
wish to encode k source symbols into n channel symbols and
transmit them through a channel with N erasures, and all k
symbols must be recovered with delay at most T . However,
we also wish to recover some of these k symbols earlier,
i.e., with delay smaller than T . Evidently, no symbols can be
recovered with delay smaller than N , due to a possible burst of
N erasures. But, for example, could we recover k−1 symbols
with delay N , and only the remaining 1 symbol with delay
T ? Or, more generally, how early can we recover each one
of the k symbols? Alternatively, if there is an upper limit on
how many symbols can be recovered with a certain delay (for
example, if only a small fraction should be recovered with
delay T , and most other symbols should be recovered earlier),
how does that impact the total number of symbols k? These
questions are answered by our analysis in Section IV. Further,
we show that, among systematic codes, the results presented
in Section IV are optimal, under a strict optimality definition.

These results have direct applications in single-user multi-
plexed coding [32], in which a user wishes to transmit different
streams with different delays to a destination. In [32], only two
possible delays (for two distinct streams) are considered under
a channel that allows for both isolated or burst erasures, while
our results are for a general number of streams and delays,
but consider only isolated erasures. Furthermore, the results
in Section IV provide the tools necessary to sequentially
construct codes in the multi-user setting studied in this paper.

3) Rate Region Achievability Analysis: As our final main
contribution, we present a detailed analysis of the achievable
rate region in our setting. The following theorem provides a
lower bound on the capacity region in any regime of operation

Theorem 2: For any R1 ∈ [0, C(T − N3, N1)], we have

R2 ≥ min (C(T − N3, N2), C(T − N2, N3) − R1, R
�
2)
(10)

where

R�
2 =

N2

N1

�
N1

N2
− 1 − R1 +

T + 1 − N1 − N3

T + 1 − N2

	
. (11)

However, we note that there is a gap between our lower
and upper bounds for certain choices of N1, N2, N3 and T .
In the weak relay-destination bottleneck regime, we study the
conditions for which the upper bound can be achieved and
present a sufficient condition for a rate pair to be part of the
capacity region. Further, aiming to reduce the gap when this
condition is not met, we propose an optimization algorithm for
which we present numerical results. This optimization leads
to an improved lower bound, albeit still with some gap to
the upper bound. We note that the results from Theorem 2,
as well as the output of the optimization, hold for all regimes
of operation. However, the underlying code construction used
in Theorem 2 is designed with the relay-destination bottleneck

Fig. 2. Rate region for N1 = 3, N2 = 2, N3 = 1, T = 6, where R1 is
the rate of the first user and R2 is the rate of the second user. Theorem 1
represents the upper bound, while Theorem 2 represents a lower bound.

regime in mind, and therefore it may be suboptimal in the
source-relay bottleneck regimes.

To illustrate, we compare Theorem 2 and Theorem 1 in
Fig. 2. As can be seen, our lower bound is able to achieve
a large portion of the upper bound. In Section V, we present
two baseline schemes, and then, in Section VI, we revisit
Fig. 2, comparing our schemes against these baseline schemes
in detail. One particularly interesting result is that neither
baseline scheme is able to achieve the sumrate upper bound
in any non-trivial setting, while our schemes are able to.

In Section VII, we extend the capacity analysis for the
remaining regimes of operation (other than the weak relay-
destination bottleneck), also considering the baseline schemes
that work well in these regimes. In particular, in both the
“strong” bottleneck regimes, we derive the capacity region,
that is, there is no gap between the upper and lower bounds,
or, in other words, Theorem 1 is tight. In the weak source-relay
bottleneck, we similarly derive a (sufficient) condition on the
parameters N1, N2, N3 and T such that the entire capacity
region can be achieved.

Remark 1: The framework used in this paper in order to
derive the lower bound presented in Theorem 2 and the
optimization algorithm can be easily extended to scenarios
with multiple users, or to a setting in which each user is
subject to different delay constraints, as the tools developed in
Section IV can be used to construct codes sequentially in each
link, while the constraints imposed by the already-constructed
codes will ensure that the overall delay constraints are always
satisfied. Thus, we believe the contributions made in this paper
are significantly broader than the particular setup we study.

III. UPPER BOUND

In this section, we present an upper bound on the achievable
rate region. We note that, as mentioned in Section II-A,
the results do not hold in general, but they do under the
channel state independent assumption. This was a mistake in

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 865

the previous paper [2], which we address now by providing a
formal proof from first principles in the appendix, and high-
lighting where the proof requires the channel state independent
assumption. The high level sketch is presented in this section.

We denote by C(T, N) = T+1−N
T+1 the capacity of a single-

link point-to-point channel [5]. Since each user is transmitting
its own message without cooperation, we have that the fol-
lowing two bounds are direct extensions from [2]

R1 ≤ C(T − N3, N1)
R2 ≤ C(T − N3, N2).

This is because a burst of N3 erasures may occur from time
T − N3 + 1 up to T , therefore, the relay must have access
to all the information about the source packets st,i at time
T −N3, otherwise, it will not be able to relay the remaining
information. Thus, we can bound each link from source i to
relay as a point-to-point link with effective delay T −N3 and
Ni erasures, obtaining the bound above.

Furthermore, we can optimistically consider N2 erasures in
both links in the first hop, and obtain the following upper
bound on the sumrate

R1 + R2 ≤ C(T − N2, N3).

This follows from a similar argument. Because the relay is
required to be time-invariant1, the FEC code employed by the
relay may assume that it will only recover any information
about the source packets, at best, at time t+N2, since a burst
of N2 erasures may happen in both links from sources to relay.
Then, the link from relay to destination can be bounded by
a point-to-point link with effective delay T − N2 that must
handle N3 erasures.

IV. SYMBOL-WISE DECODE AND FORWARD AND

DELAY SPECTRUM

In order to present our coding scheme, first let us define
the notion of delay spectrum for a point-to-point, single-link
code. This notion exists and is mentioned in [2], however,
we make an in-depth analysis of this concept, which has not
been made before. Similar analysis has been done in works
such as [32], where a source wishes to transmit two streams
with different delays to a destination, however, we generalize
it for any number of different streams and delays, focusing on
the arbitrary erasure channel instead of the burst channel.

At a high level, the delay spectrum of a (point-to-point)
code represents the (worst-case) delay associated with each
source symbol, rather than the delay associated with the source
packet. For example, a source packet may be recoverable only
with delay T = 3, but some of its symbols may be recovered
earlier, with delay 1 or 2. A packet is only fully recovered
when all of its symbols are recovered, thus the delay of a
packet is equal to the maximum delay in its delay spectrum.
This idea has been used in [2] and in the current paper to
justify that the relay should not wait until the entire packet

1If the relaying function is not required to be time-invariant, higher rates
can be achieved, at the cost of overhead and an adaptive relaying scheme that
depends on the erasure pattern observed in each link. This was missed in [2]

is recovered before transmitting information about that packet
to the destination. However, in [2], only a specific family of
codes was considered, which achieves a particular “uniform”
delay spectrum, recovering one symbol at every time instant
{N, N +1, . . . , T}. Unfortunately, this is not sufficient in our
setting, and we must consider a broader set of achievable delay
spectra. In this section, we study a set of “optimal” delay
spectra, which are defined formally later, but, before doing
so, let us formally define the delay spectrum and relate its use
to symbol-wise decode-and-forward for a relayed setting.

Definition 8: An (n, k,T, M)F point-to-point code, where
T = [T [1], . . . , T [k]] is the delay spectrum of the code,
consists of the following:

1) A sequence of source messages {st}∞t=0, where st ∈ F
k.

2) An encoding function

f : F
k × · · · × F

k� �� �
M+1 times

→ F
n

used by the transmitter at time t to generate

xt = f(st−M , st−M+1, . . . , st).

3) A list of k decoding functions

ϕt+T [j] = F
n
e × · · ·Fn

e� �� �
t+T [j]+1 times

→ F
k

where j ∈ {1, 2, . . . , k} is the index of the jth symbol
(element of st), used by the receiver at time t + T [j] to
generate ŝt[j], that is, an estimation of the jth element
of st.

Similar to before, we assume M → ∞ and refer only to
(n, k,T)F point-to-point streaming codes.

Definition 9: An (n, k,T)F point-to-point code is said to
achieve delay spectrum T under N erasures if, for any
e�t ∈ ΩN ,

ϕt+T [j](hn(x0, e
�
0), . . . , hn(xt+T [j], e

�
t+T [j])) = st[j]

For the relaying strategy, let us now introduce the concept of
symbol-wise decode-and-forward. In this strategy, the relaying
function employed by the code first decodes the source packets
transmitted by the source, and then encodes them again. This is
an extension of the symbol-wise decode-and-forward defined
in [2] for the three-node network. However, the addition of a
second source node adds some nuances to the strategy, as the
messages relayed by the relay now must be multiplexed in
some way. Below, we formally define this strategy.

For the remaining of the paper, we use T(1)
i to denote the

delay spectrum of the code used by the source node i and
T(2) to denote the delay spectrum of the code employed by
the relay.

Definition 10: Assume the source nodes transmit their
source messages {st,i}∞t=0 to the relay using an (ni, ki,T

(1)
i)F

point-to-point, single-link code with decoding functions
ϕ

(1)

t+T
(1)
i [j],i

. Then, a relay is said to employ a symbol-wise

decode-and-forward if the following holds:

• The relay employs the decoding functions ϕ
(1)

t+T
(1)
i [j],i

at

time t + T
(1)
i [j] to estimate the j-th source symbol of

each source packet ŝt,i[j].

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

866 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

TABLE I

EXAMPLE OF SYMBOL-WISE DECODE-AND-FORWARD FOR N1 = 1, N2 = 1, N3 = 1, T = 2. HIGHLIGHTED IN BLUE IS PACKET s0,1 , WHICH IS
RECOVERED AT TIME t = 2 BY THE DESTINATION

• The relay employs an (n3, k1 +k2,T(2))F point-to-point,
single-link code to transmit a sequence of relay messages
{s�t}∞t=0 to the destination.

• The relay messages are given by

s�t[j
�] = ŝt−(T (1)[j]),1[j1] (12)

where j1 ∈ {1, 2, . . . , k1}, or

s�t[j
�] = ŝt−(T (1)[j]),2[j2] (13)

where j2 ∈ {1, 2, . . . , k2}.
This definition simply implies that each source employs a

point-to-point code, the relay attempts to decode the symbols
from each source, then re-encodes them together using another
point-to-point code. Before we continue, let us give a brief
and simple example of a symbol-wise decode-and-forward
code designed for channel parameters N1 = 1, N2 = 1,
N3 = 1 and T = 2. Both source nodes employ the point-
to-point link presented in Table Ia. Then, the relay decodes
every symbol with a delay of 1, that is, each symbol st,i[1] is
recovered at time t+1. The relay then employs the following
rule: s�t[1] = st−1,1[1] and s�t[2] = st−1,2[1]. That is, the relay
will now encode using a point-to-point code with k = 2. The
first symbol of this code will be a delayed version of the source
symbol coming from the first user, while the second symbol
of this code will be a delayed version of the source symbol
coming from the second user. This code is shown in Table I.
In this example, we have k1 = 1, k2 = 1, n1 = n2 = 2 and
n3 = 4. Thus, we have R1 = R2 = 1/4. This matches the
upper bound R1 + R2 ≤ 1/2. From the table, it can be seen
that, even with any one erasure from sources to relay, the
relay is still able to recover the desired symbols with a delay
of 1 time instant. Similarly, the destination is able to recover
any symbol with delay at most T = 2 with any one erasure
from relay to destination.

Furthermore, we define a concatenation of point-to-point
codes.

Definition 11: A concatenation of an (n�, k�,T�)F point-
to-point code with an (n��, k��,T��)F point-to-point code is
an (n� + n��, k� + k��, [T�,T��]) point-to-point code with the
following properties

• Let {f �
t} be the encoding function of the first code and

{f ��
t } be the encoding function of the second code. The

encoding function of the concatenated code is given by

{[f �
t, f

��
t]}, where [x, y] denotes the concatenation of a

vector x and a vector y.
• Let {ϕ�

t+T �[j]}k�
j=1 be the list of decoding functions of the

first code and {ϕ��
t+T ��[j]}k��

j=1 be the list of decoding func-
tions of the second code. The list of decoding functions
of the concatenated code is given by {ϕ�

t+T �[j]}k�
j=1 �

{ϕ��
t+T ��[j]}k��

j=1, where x � y denotes the concatenation

of two lists x and y.

In the previous example, in Table I, one can see such con-
catenation. Note that the code used from relay to destination
is a concatenation of two diagonally-interleaved maximum
distance separable (MDS) codes [5] with n� = 2 and k� = 1.
This results in a code with n = 4 and k = 2.

Lemma 1: If there exists an (n�, k�,T�)F point-to-point
code that achieves delay spectrum T� under N erasures,
and an (n��, k��,T��)F point-to-point code that achieves delay
spectrum T�� under N erasures, then there exists an (n� +
n��, k� +k��, [T�,T��])F point-to-point code that achieves delay
spectrum [T�,T��] under N erasures.

For the remaining of this paper, all proofs that do not appear
immediately after the statement of the proposition, lemma or
theorem can be found in the appendix, in order of the statement
appearance in the paper.

Another useful operation that can be made is simply per-
muting the source symbols.

Lemma 2: Assume a delay spectrum T is achievable under
N erasures by some code. Then, any permutation πT, where
π is a permutation matrix, of this delay spectrum is also
achievable under N erasures.

Since any permutation of an achievable delay spectrum is
also achievable, we may instead describe the delay spectrum
of a code by stating how many symbols are transmitted with
some delay.

Definition 12: Consider a delay spectrum T =
[T [1], T [2], . . . , T [k]]. An equally-delayed-symbols grouping
description of such delay spectrum is given by a list of tuples

G = [(T (g)[1], k(g)[1]), . . . , (T (g)[�(g)], k(g)[�(g)])]

where �(g) is the length of the list. For simplicity, we assume
T (g)[1] ≥ T (g)[2] ≥ · · · ≥ T (g)[�(g)], therefore, T (g)[1] =

max(T) and T (g)[�(g)] = min(T). Furthermore, we define

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 867

• T(g) = [T (g)[1], . . . , T (g)[�(g)]] as the ordered list of
possible delays.

• k(g) = [k(g)[1], . . . , k(g)[�(g)]], where
��(g)

i=1 k(g)[i] = k,
as the ordered list of number of symbols associated with
each delay.

Again, referring to the previous example, we could describe
the code used in Table I with G = [(1, 2)], that is, two symbols
are recovered with delay 1.

A. Single-Link Point-to-Point Results for Delay Spectrum

In this Section, we present an achievability result for single-
link point-to-point codes in terms of delay spectrum.

Lemma 3 (Achievability): Let

T(g) =

T (g)[1], T (g)[2], . . . ,

T (g)[�(g)]
�

=

T (g)[1], T (g)[1] − 1, . . . , N + 1, N

�
and n−k

N be an integer. Then, there exists a systematic
(n, k,T)F point-to-point single-link code that can transmit

k(g)[1] = n − T (g)[1]
N (n − k) symbols with delay T (g)[1] and

k(g)[j] = n−k
N for all other delays.

The above Lemma can be used to derive the following
condition on achievability:

Corollary 1: Assume there is a maximum number of sym-
bols we are allowed to transmit at each delay T (g)[j], that is,
k(g) ≤ kcon is a constraint. Then, if

k ≤ n−n · N ·
�
1 −�j−1

�=1
kcon[�]

n

T (g)[j] + 1

∀j ∈ {1, 2, . . . , �(g)}
(14)

k ≤
�(g)�
�=1

kcon[�] (15)

there exists an (n, k,T)F point-to-point single-link code that
achieves the desired delay spectrum T(g) under N erasures.

The usefulness of this corollary should be clearer when
we present our Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme.

Furthermore, we show a lower bound on the delay spectrum.
Lemma 4 (Lower Bound): For a systematic point-to-point

(n, k)F single-link code subject to N erasures, the delay of
the j-th equally-delayed group is lower bounded by

T(g)[j] ≥ Nn

n − k

�
1 −

j−1�
�=1

k(g)[�]
n

�
− 1. (16)

Corollary 2: Assume T(g) = [T (g)[1], T (g)[1]− 1, . . . , N],
i.e., the possible delays are separated by one, and the minimum
delay is N . Then, the following holds for any (n, k,T)F point-
to-point single-link code under N erasures

k(g)[1] ≥ n − T (g)[1]
N

(n − k), and k(g)[�(g)] ≤ n − k

N

The implication of Corollary 2 is that there is a minimum
number of symbols that need to be transmitted at the worst
possible delay (i.e., T (g)[1]), and a maximum number of
symbols that can be transmitted at the smallest possible delay.

This already suggests that there is some limit to the achievable
delay spectrum, and that we can not have almost all symbols
transmitted with a very small delay, and very few symbols
with a large delay. We now wish to understand what is the
best delay spectrum we can achieve, but first, let us define the
notion of “best”, or optimal, delay spectrum.

Definition 13: In this definition, for consistency, we assume
all delay spectra are ordered in increasing order. Assume there
exists an (n, k,T)F point-to-point streaming C that achieves
delay spectrum T under N erasures. We say that the delay
spectrum T is optimal if and only if, for any T� such that
there exists an (n, k,T�)F point-to-point streaming code that
achieves delay spectrum T� under N erasures, the following
holds:

T ≤ T� (17)

where inequality is taken element-wise. In other words, every
symbol is recovered by C with delay less than or equal to the
delay achieved by any other streaming code with the same
rate, blocklength and number of erasures.

Proposition 1: Let C be an (n, k,T)F point-to-point stream-
ing code that achieves delay T under N erasures, and let C�

be an (n, k,T�)F point-to-point streaming code that achieves
delay T� under N erasures. Let the equally-delayed-symbols
grouping description of T be (T(g),k(g)), while for T� it is
(T(g),k�(g)). In particular, note that T(g) is the same for both.
This is without loss of generality.2

Then

�(g)�
�=j

k(g)[�] ≥
�(g)�
�=j

k�(g)[�] ∀j (18)

implies T ≤ T�. In other words, the “better” delay spectrum
transmits more symbols with lower delay.

Proof: To see it, recall that we assumed that T and T�

are ordered. Let us prove it by showing that, if T �[�] < T [�]
for some �, then (18) does not hold for some j. Let �� be
the first symbol for which T �[��] < T [��]. Let j be such that
T (g)[j] = T �[��]. We now count the number of symbols that
are transmitted with delay up to T �[��] in each code, from
which it follows that

�(g)�
�=j

k�(g)[�]
(a)

≥ �� (19)

> �� − 1 (20)

(b)

≥
�(g)�
�=j

k(g)[�] (21)

where (a) follows from the fact that, certainly, all �� symbols
from 1 to �� in code C� are transmitted with delay at most
T �[��], because the symbols are ordered; and (b) follows from
the fact that certainly the ��th symbol from C has a delay larger
than T �[��], therefore, at most the previous ��−1 symbols have
delay equal to or lower than T �[��]. This completes the proof.

2This is because we can always arbitrarily add an element T (g)[j] to T(g)

and have the corresponding k(g)[j] to be equal 0.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

868 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Example 1: Consider a code with k = 6, n = 10, N = 1,
and T (g)[1] = 2. Then, consider a code constructed as in

Lemma 3. This code transmits k(g)[2] = 4 symbols with
delay 1, and k(g)[1] = 2 symbols with delay 2. Let us compare
this with a code with uniform delay spectrum3 that transmits
k�(g)[2] = 3 symbols with delay 1, and k�(g)[1] = 3 symbols
with delay 2. Intuitively, the first code is better. But let
us arrange their delay spectra in increasing order. We have
T = [1, 1, 1, 1, 2, 2], and T� = [1, 1, 1, 2, 2, 2]. We then note
that T [4] < T �[4], which is our definition of a “better” delay
spectrum. In fact, as we will see below, the first code is optimal
in terms of delay spectrum, i.e., there is no other code that can
transmit any of the k symbols with a smaller delay without
decreasing the rate.

Remark 2: A natural question to ask is: does the optimal
delay spectrum (always) exist? That is, is there a delay
spectrum that is better than every other, for every single
symbol? At first, this notion of optimality might seem too
strict, however, Theorem 3 below answers this question in the
affirmative for systematic codes, and in fact shows that such
optimal delay spectrum matches Lemma 3.

Remark 3: The assumption that the delay spectra of the
codes are ordered is justified by Lemma 2, which states
that permutations of an achievable delay spectrum are also
achievable. Furthermore, due to this fact, this assumption is
also required, as otherwise optimality would be ill-defined for
any code with more than one possible delay. This is because
we would always be able to find a permutation of the code
that dominates the original code in at least one position, but is
dominated in another. For example, T = [1, 2] and T� = [2, 1].

Theorem 3 (Optimal Delay Spectrum): Assume T(g) =
[T (g)[1], T (g)[1] − 1, . . . , N], i.e., the possible delays are
separated by one4, and the minimum delay5 is N . Further,
assume6 n−k is a multiple of N . Then, the optimal number of
symbols transmitted with each delay under N erasures, for any
(n, k,T)F point-to-point systematic single-link code is given
by

k(g)[1] = n − T (g)[1]
N

(n − k)

k(g)[j] =
n − k

N
, ∀j ∈ {2, 3, . . . , �(g)}. (22)

In other words, the delay spectrum described by the above
equally-delayed-symbols grouping description is optimal.

One can see that the result from Theorem 3 matches the one
from Lemma 3, that is, for a systematic point-to-point code,
the delay spectrum achieved by Lemma 3 is optimal.

Remark 4: The codes presented in [2] have the property
n−k = N , and achieve a delay spectrum of the form k(g)[j] =
n−k
N = 1 for all j, including j = 1. Further, they have the

3This code could be constructed with only n = 9, but for the example,
we assume a suboptimal code that uses n = 10.

4This assumption is without loss of generality, as k(g)[i] = 0 can be set
for some delay T (g)[i], and this would be equivalent to having a larger gap
between the adjacent delays.

5This assumption is trivial, as no symbol can be recovered certainly with
delay less than N , as N erasures in a burst may occur.

6Again, this is, in theory, without loss of generality, as n and k are design
parameters and can be set to Nk′ and Nn′, maintaining the rate of the code.

property that T (g)[1] = n−1. These properties, together, make
them optimal. However, these are limiting properties, and the
results presented in this section are more general. Furthermore,
this is the first time optimality of such codes is shown.

V. ACHIEVABLE RATE REGION

In this section, we present lower bounds on the capacity
region. For now, let us make the following assumptions on
the parameters:

• N1 ≥ N2 ≥ N3. Recall that we had already assumed
N1 ≥ N2 without loss of generality.

• T ≥ 1
2

��
N2

1 − 4N3(N2 − N3) + N1 + 2N2 − 2

.

These conditions ensure that we are operating in the weak
relay-destination bottleneck regime7, as defined in Section II.
Later, in Section VII, we study all the regimes of operation.

We start the section by introducing a novel scheme, in which
the relay-destination link attempts to transmit at its maximal
rate, denoted as Fixed-Bottleneck Symbol-Wise Decode-and-
Forward (FB-SWDF). This scheme provides us with the
lower bound in Theorem 2. Then, we formally present tools
that allow us to naively extend the known schemes for the
three-node network to a multi-access network. In particular,
one of these schemes—denoted Concatenated Symbol-Wise
Decode-and-Forward (CSWDF)—is able to outperform our
FB-SWDF scheme for some rate pairs. This is due to the
attempt of transmitting at maximal rate. Finally, we present an
optimization approach, which allows us to achieve the highest
known rates.

Examples of the rates achieved by each scheme and the code
construction of our FB-SWDF are presented in Section V-D.

A. Fixed-Bottleneck Symbol-Wise Decode-and-Forward
To give a general idea of the scheme, let us first attempt to

fix the code employed by the relay. Let us use a code with
rate Rbn = C(T − N2, N3), where Rbn is the rate of the
single-link code employed by the relay. For some choice of n3,
we then can find the delay spectrum of this code by employing
Lemma 3. Note that the delay spectrum of the code employed
by the relay imposes a constraint on the delay spectrum of the
codes employed by the source nodes.

Further, let us also fix some code for the first user. In partic-
ular, let us attempt to transmit with rate R1 = C(T −N3, N1),
i.e., its single-user capacity. Then again, for some choice of
n1, using Lemma 3, we are able to find the delay spectrum
of this code. This will, in turn, update the imposed constraints
on the delay spectrum of the second user.

Finally, with the updated delay constraints for the second
user, we can apply Corollary 1 and find an achievable rate for
R2 given the delay constraints imposed by the codes used in
the relay and from the first source node to relay.

With the correct choice of n1, n2 and n3, this coding scheme
allows us to derive the following Lemma.

Lemma 5: For R1 = C(T − N3, N1) the following rate is
achievable in the second link

R2 = min(R�
2, C(T − N2, N3) − C(T − N3, N1)) (23)

7The assumptions are just solving for the condition C(T − N3, N1) +
C(T − N3, N2) ≥ C(T − N2, N3) ≥ C(T − N3, N2).

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 869

where

R�
2 = 1 −

N2(1 − (T + 1 − N3 − N1)
(N2−N3)

(T+1−N2)(T+1−N3)
)

N1

(24)

One can notice that this Lemma is a particular case of
Theorem 2. However, we believe that introducing this cod-
ing scheme first, and then generalizing it, allows a clearer
understanding of the steps required in order to achieve the
rates presented. Furthermore, this Lemma is useful because
it allows us to derive the following corollary, which gives a
sufficient condition for the sumrate to be achieved for at least
one rate pair.

Corollary 3: If (T +1−N3)(T +1−N2−N1) ≥ (T +1−
N3 − N1)(N2 − N3), then the sumrate capacity R1 + R2 =
C(T−N2, N3) is achieved at least one point of the rate region.

Now, note that we can follow the steps mentioned in this
section for any Rbn and R1. In fact, Theorem 2 is obtained
by simply considering a general R1, instead of R1 = C(T −
N3, N1). In the derivation of Theorem 2, we actually consider
a code that might seem suboptimal for the first source node—
we employ a slightly deteriorated delay spectrum, in order
to obtain a uniform delay spectrum. For example, instead of
transmitting 2 symbols with delay 1 and zero symbols with
delay 2, we may opt to transmit 1 symbol with each delay
(i.e., one symbol with delay 1, and another symbol with delay
2). Numerical results show that this choice of code does not,
in fact, decrease the rate achieved by the second user. That
is, the achievable rate region obtained by employing such
codes in the link from first user to relay or by employing an
optimal-delay-spectrum code is the same. Below, we restate
Theorem 2.

Theorem: For any R1, the following rate is achievable in
the second link in the first hop

R2 = min (C(T − N3, N2), C(T − N2, N3) − R1, R
�
2)
(25)

where

R�
2 =

N2

N1

�
N1

N2
− 1 − R1 +

T + 1 − N1 − N3

T + 1 − N2

	
(26)

Remark 5: We note that the rate achieved by the second
user in Theorem 2 is the minimum between three rates. The
first rate, C(T − N3, N2), is the single-user bound of the
second user. This term was not present in Lemma 5 because,
from the assumption that we are in the relay-destination
bottleneck regime, thus for R1 = C(T−N3, N1), the sum-rate
bound is always active, instead of the single-user bound.
The second term is just the sum-rate bound, as we have
R1 + R2 ≤ C(T −N2, N3). This is the same as the first term
in Lemma 5, with R1 = C(T −N3, N1). The third term, R�

2,
is less straight-forward, and comes from the combination of
the delay spectrum of the two codes. One can verify, however,
that substituting R1 = C(T −N3, N1) will lead to Lemma 5.

Furthermore, we are also interested in knowing which part
of the capacity region (in particular, in the sumrate region)
is achievable, when some of it is. This is provided by the

following Lemma, which provides another achievable rate pair.
This rate pair is simply the intersection between the line
defined by R�

2 in Theorem 2 and the sumrate bound.
Lemma 6: If the sumrate capacity is achieved at at least

one point of the rate region, then the following point is also
achievable

R1 =
N2 − N3

T + 1 − N2
(27)

R2 =
T + 1 − 2N2

T + 1 − N2
(28)

The complete proofs of all the statements in this section
are presented in the Appendix, with explicit description of the
code parameters used.

B. Extensions of Known Schemes

In this section, we present a time-sharing-like tool that
allows us to generalize the results in [2], and can also be
used to define achievable regions based on achievable points.

Using the following Lemma, we can extend the schemes
presented in [2] and, generally, show that if any two points
are achievable, (practically) any linear combination between
such two points is also achievable.

Lemma 7: The following lemma holds for symbol-
wise decode-and-forward: assume there exists an
(N1, N2, N3)-achievable (n1, n2, n3, k1, k2, T)F-streaming
code, and another (N1, N2, N3)-achievable (n�

1, n
�
2, n

�
3, k

�
1,

k�
2, T)F-streaming code. Then, for any A, B ∈ Z+, there

exists an (N1, N2, N3)-achievable (An1 + Bn�
1, An2 +

Bn�
2, A n3 + Bn�

3, A k1 + Bk�
1, A k2 + Bk�

2, T)F-streaming
code.

Remark 6: While Lemma 7 allows us to achieve any convex
combination of two pairs of rates (R1, R2) and (R�

1, R
�
2),

it should be noted that, because n is defined as the maximum
among n1, n2 and n3, it is possible to achieve rates higher
than the simple convex combination when the largest n is
different in each point of operation (i.e., each rate pair).
This can be seen in Section VI for both the CSWDF and
Concatenated Message-wise Decode-and-forward (CMWDF)
schemes, where the achievable rate region of such schemes is
not a straight line connecting the two single-user rates.

1) Concatenated Symbol-Wise Decode-and-Forward: The
first scheme we consider is an extension of the single-
user capacity-achieving codes presented in [2], which
employ symbol-wise decode-and-forward in the three-node
network. It is known from [2] that there exists an
(N1, N2, N3)-achievable code with the following parameters:

n1 = T + 1 − N3, n2 = 0, n3 = T + 1 − N1

k1 = T + 1 − N1 − N3, k2 = 0. (29)

Similarly, there exists an (N1, N2, N3) achievable code with
the following parameters:

n�
1 = 0, n�

2 = T + 1 − N3, n�
3 = T + 1 − N2

k�
1 = 0, k�

2 = T + 1 − N2 − N3. (30)

Then, it follows from Lemma 7, that we can concatenate both
single-user codes and obtain another (N1, N2, N3)-achievable

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

870 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

streaming code. This is the construction we denote as Con-
catenated Symbol-wise Decode-and-forward.

Lemma 8: For any A, B ∈ Z+ and T ≥ N1 + N3, there
exists an (N1, N2, N3)-achievable code with rate pair

n = max(An1 + Bn�
1, A n2 + Bn�

2, A n3 + Bn�
3) (31)

R1 =
Ak1 + Bk�

1

n
(32)

R2 =
Ak2 + Bk�

2

n
(33)

where k1, k�
1, k2, k�

2, n1, n�
1, n2, n�

2, n3 and n�
3 are as in (29)

and (30).
Proof: The result follows directly from applying Lemma 7

to the capacity-achieving single-user codes known to be
achievable from [2], and computing the resulting rate pair of
the concatenated code.

The following Lemma presents an achievable point which,
to the best of our knowledge, is the best achievable rate for
R1 such that R2 = C(T − N3, N2), i.e., the corner point
for maximum R2. This rate can also be obtained using the
Concatenated Symbol-wise Decode-and-forward scheme.

Lemma 9: For R2 = C(T − N3, N2), the following R1 is
achievable

R1 =
(T + 1 − N3 − N1)(N2 − N3)
(T + 1 − N1)(T + 1 − N3)

(34)

Remark 7: Note that

R1 =
(T + 1 − N3 − N1)(N2 − N3)
(T + 1 − N1)(T + 1 − N3)

<
(T + 1 − N3 − N2)(N2 − N3)
(T + 1 − N2)(T + 1 − N3)

= C(T − N2, N3) − C(T − N3, N2).

That is, the sum rate at the point from Lemma 9 is strictly
lower than the sumrate capacity.

2) Concatenated Message-Wise Decode-and-Forward:
Another scheme that is worth analyzing is the Concatenated
Message-wise Decode-and-forward (CMWDF). Similar to the
CSWDF scheme, we start by finding a single-user achievable
streaming code, and then we apply Lemma 7. For this con-
struction, however, we require the delay of all symbols to be
equal in each link, that is, the relay must decode the entire
source message before it can re-encode it. This effectively
separates the communication in two: one with delay T̃ and
another with delay T − T̃ , where T̃ is a design parameter.

It then follows that there exists an (N1, N2, N3)-achievable
code with the following parameters:

n1 = (T̃1 + 1)(T − T̃1 + 1 − N3)
n2 = 0

n3 = (T − T̃1 + 1)(T̃1 + 1 − N1)

k1 = (T − T̃1 + 1 − N3)(T̃1 + 1 − N1)
k2 = 0 (35)

and similarly, an (N1, N2, N3)-achievable code with the
parameters

n�
1 = 0

n�
2 = (T̃2 + 1)(T − T̃2 + 1 − N3)

n�
3 = (T − T̃2 + 1)(T̃2 + 1 − N2)

k�
1 = 0

k�
2 = (T − T̃2 + 1 − N3)(T̃2 + 1 − N2) (36)

where T̃1 ∈ {N1, . . . , T − N3} and T̃2 ∈ {N2, . . . , T − N3}
are design parameters. In particular, one can optimize these
parameters in order to find the maximum single-user rate that
can be achieved using message-wise decode-and-forward.

Lemma 10: For any A, B ∈ Z+ and T ≥ N1 + N3, there
exists an (N1, N2, N3)-achievable code with rate pair

n = max(An1 + Bn�
1, A n2 + Bn�

2, A n3 + Bn�
3) (37)

R1 =
Ak1 + Bk�

1

n
(38)

R2 =
Ak2 + Bk�

2

n
(39)

where k1, k�
1, k2, k�

2, n1, n�
1, n2, n�

2, n3 and n�
3 are as in (35)

and (36), substituting T̃i with

T̃i = argmax
T �

min(R̃i, R̃bn) (40)

R̃i =
T � + 1 − Ni

T � + 1
(41)

R̃bn =
T − T � + 1 − N3

T − T � + 1
. (42)

Proof: As before, this follows directly from applying
Lemma 7 and computing the rate pair. The message-wise
decode-and-forward scheme and its achievability are presented
in more detail in [2].

C. Optimized-Bottleneck Decode-and-Forward (OB-SWDF)

While Theorem 2 is able to achieve the sumrate capacity,
and, in that case, the FB-SWDF scheme presented is optimal,
there is a significant loss in rate when we can not achieve the
upper bound. This is due to our greedy approach in which
the rate of the code used from relay to destination is set to
the optimistic Rbn = C(T −N2, N3). Because we are using a
high rate code in this link, it translated into a delay spectrum
with more symbol with higher delays, which imposes lower
rates in the source-to-relay links.

Unfortunately, analytical expressions of the rates as a func-
tion of Rbn, similar to Theorem 2, are hard to derive, due
to a non-uniformity of the delay spectrum. For that reason,
we instead tackle this problem numerically by developing an
optimization framework.

Our approach is the following: we will attempt to achieve
the highest possible R2 for some given R1. Thus, we start
by fixing some R1 ∈ [0, C(T − N3, N1)]. Also, because we
define the rate with n = max(n1, n2, n3), we also simplify
the problem, enforcing n = n1 = n2 = n3. This is without
loss of generality as we can always zero-pad symbols of the

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 871

higher-rate codes and achieve the same overall rate. This give
us the following optimization problem

R∗
2 = max

R2,Rbn,n
R2 (43)

s.t. k(g)
2 ≤ k(g)

bn − k(g)
1 (44)

where k(g)
1 , k(g)

2 and k(g)
bn are computed as functions of R1

(which is fixed), R2, Rbn and n as in Lemma 3. However,
the ordering in k(g)

bn is slightly different from how we defined
the equally-delayed-symbols grouping description previously.
Now, we consider the following ordering:

T(g)
1 = T(g)

2 = [T − N3, T − N3 − 1, . . . , N2 + 1, N2] (45)

T(g)
bn = [N3, N3 + 1, . . . , T − N2 − 1, T − N2]. (46)

That is, while the delays for the symbols in the source-to-
relay links are ordered in decreasing order, the delays for the
relay-to-destination symbols are ordered in increasing order.
Note that, by summing the delays, we get an overall delay of
T . The constraint in our optimization is simply saying that,
if the relay-to-destination can transmit κ symbols with delay
τ , then these same κ symbols must be transmitted with delay
T − τ from sources to relay8. Further, the constraint states
that, if user 1 is already transmitting κ1 symbols with delay
T −τ , then only κ−κ1 remaining symbols can be transmitted
by user 2 with delay T − τ , in order to match the total κ
symbols that the relay transmits with delay τ . The choices of
T in equations (45) and (46) are in order to match N3 with
T − N3, N3 + 1 with T − N3 − 1, and so on, such that all
symbols are subject to an overall delay of T (by summing the
delay in the first part with the one in the second part). The
ranges come from the fact that the lowest delay that a symbol
can be transmitted in either link from source to relay is N2,
while the lowest delay that a symbol can be transmitted in the
link from relay to destination is N3, due to the possibility of
a burst of erasures.

Our heuristic approach to solve this optimization problem
is described below. First, we choose some large enough n
such that for any choice of R1, R2 and Rbn we meet the
requirement conditions described in Lemma 3. Once R1 and
n are fixed, the delay spectrum of the code in the link from
first source to relay is also fixed.

Then, we initialize the optimization algorithm with Rbn =
C(T − N2, N3), which again (together with n) provides us
a delay spectrum, and, with the delay spectrum of the first
user and the relay codes, we are able to find an achievable
R2 through Corollary 1. Note that the outcome of this initial
point is exactly Theorem 2, since we have chosen to initialize
with the same Rbn. If R1 + R2 = Rbn, that is, if we achieve
the sumrate capacity, we stop the optimization algorithm, since
nothing else needs to be done.

However, if R1 + R2 < Rbn, then we need to update the
code used from relay to destination. We update the rate Rbn

8The sources could, in principle, transmit with a smaller delay, however,
there is no necessity of doing so, thus we keep the formulation simpler by
assuming the source will buffer the symbols in order to achieve exactly an
overall delay of T . In practice, there is no reason to not transmit with the
smallest possible delay.

using a simple bisection-like algorithm. We start by defining
a lower bound R1

� = R1 + R2 < Rbn and an upper bound
R1

u = Rbn. Then, at the ith iteration, we take the following
steps

1) Update Ri
bn = Ri−1

� +Ri−1
u

2 .
2) Compute the delay spectrum of the relay-to-destination

code with rate Ri
bn using Lemma 3.

3) Compute the delay constraint imposed on the code from
the second source to the relay given the delay spectra
of the codes from first source to relay and from relay to
destination.

4) Compute Ri
2 using Corollary 1.

5) If R1 + Ri
2 = Ri

bn, we update the lower bound Ri+1
� =

Ri
bn and keep the upper bound Ri+1

u = Ri
u. Otherwise,

we update the upper bound Ri+1
u = Ri

bn and keep the

lower bound Ri+1
� = Ri

�.

6) If Ri+1
u − Ri+1

� > �, proceed to the i + 1th iteration.
Otherwise, end the algorithm.

Remark 8: From construction, every step will update either
the lower bound (increasing it) or the upper bound (decreasing
it). Each bound indeed represents a bound on our algorithm:
the lower bound represents an achievable rate (i.e., indeed
a lower bound), while the upper bound represents an upper
bound on the achievable rate using our framework. Due to the
former, the algorithm can only improve upon the FB-SWDF
(which is the starting lower bound). Furthermore, the algo-
rithm is guaranteed to eventually converge, as the gap reduces
by a factor of 1/2 every step.

Our experiments have shown that this algorithm converges
fairly quickly to a high precision degree (e.g. � = 10−5).
Further, this algorithm provides the best achievable rates
known to the authors. The rate outputs of the algorithm can
be seen in Section VI.

D. Examples
In this example, we use the channel parameters N1 = 3,

N2 = 2, N3 = 1, T = 6. In order to present numerical values
and a code construction, we are going to focus the example
in the scenario where the first user wishes to transmit at its
single-user capacity, that is, R1 = C(T − N3, N1) = 0.5.
Then, we wish to construct the codes for each user and the
relay in order to maximize the rate achieved by the second
user.

1) Upper Bound: By applying Theorem 1, we have that
R2 ≤ 0.3. This not only gives us a benchmark, but is also
useful in the code construction of our FB-SWDF, as we will
greedly attempt to achieve that rate.

2) FB-SWDF: As explained previously, we start by fixing
the rate of the code from relay to destination at Rbn =
C(T − N2, N3) = 0.8. We also choose some value of n,
in this case, n = 30. This choice is explained in detail in the
proof of Lemma 5. With the desired rates R1, Rbn and the
blocklength n, we are able to construct codes, as detailed in
the proof of Lemma 3, that achieve a certain delay spectrum.
In this example, the code from relay to destination is able to
transmit six symbols with each delay, from 1 to 4, and the
code employed by the first user transmits five symbols with

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

872 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

TABLE II

CAPACITY-ACHIEVING FB-SWDF CODES FOR N1 = 3, N2 = 2, N3 = 1 AND T = 6

each delay from 3 to 5. These codes are presented in Table IIa.
Recall that each source packet st,1 contains 15 symbols, and
each source packet st,2 contains 9 symbols. For presentation,
the 15 symbols from st,1 are split in three “super-symbols” at,
bt and ct, each containing five symbols. Similarly, dt denotes
st,2. Further, for presentation, symbols from times t� < t
are not presented in the table. As can be seen in the table,
symbols belonging to ct can be recovered by the relay at
time t + 3, symbols belonging to bt can be recovered at time
t + 4 and symbols belonging to at can be recovered at time
t+5. Thus, 5 symbols are recovered with each delay {3, 4, 5}.
The 9 symbols from dt can be recovered at time t + 2, thus
9 symbols are recovered with delay {2}.

Now, one can see that the symbols transmitted with delay 5
(from the first user to the relay), i.e., symbols belonging to at,
must be matched with the symbols transmitted with delay 1
(from relay to destination) in order to achieve an overall delay
of T = 6. Similarly, symbols transmitted with delay 4 will be
matched with symbols transmitted with delay 2, and so on.
Therefore, the second user has the following “budget”: it can
transmit six symbols with delay 2 (to be matched with the
remaining six symbols with delay 4), one symbol with delay 3

(to be matched with the remaining one symbol with delay 3),
one symbol with delay 4, and one symbol with delay 5. This
gives us the following tuple

T(g,1)
2 = [5, 4, 3, 2] (47)

k(con) = [1, 1, 1, 6]. (48)

By applying Corollary 1, we find out that we can, in fact,
obtain a code with k

(1)
2 = 9. In fact, it turns out that we

can transmit all 9 symbols with delay 2 by simply repeating
a diagonally-interleaved MDS code with rate 2/3. However,
since our goal is to recover with delay T = 6, we can choose to
wait (i.e., buffer) some symbols, so all symbols are recovered
by the destination at the same time instant. This code is
presented in Table IIb. The matching of delay spectra can be
seen in Table III. Recall that R2 = 9/30 = 0.3 is exactly the
upper bound.

3) CSWDF: For CSWDF, one way to solve this problem is
by optimizing A and B such that it results in R1 = 0.5 and
maximizes R2. That is, under CSWDF, we wish to solve the
following optimization problem

R∗
2 = max

A,B
R2 (49)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 873

TABLE III

NUMBER OF SYMBOLS TRANSMITTED WITH EACH DELAY IN EACH HOP.
BLUE SYMBOLS ARE TRANSMITTED BY THE FIRST USER, WHILE

GREEN SYMBOLS ARE TRANSMITTED BY THE SECOND USER

s.t. R1 = 0.5 (50)

n = max(6A, 6B, 4A + 5B) (51)

R1 =
3A

n
(52)

R2 =
4B

n
(53)

where the constraints come from Lemma 8. Recall that the
coefficients come from (29) and (30). For example, k1 = T +
1 − N1 − N3 = 3 is the coefficient used for R1. Solving this
optimization leads to A = 5 and B = 2, which results in
n = 30, k1 = 15 and k2 = 8, i.e., R1 = 0.5 as desired, and
R2 = 0.2667, slightly lower than the upper bound and the rate
achieved by our FB-SWDF scheme.

4) MSWDF: Similar to the CSWDF, this requires solving
an optimization problem, however, for MSWDF we also need
to optimize the parameters T̃i, i ∈ {1, 2}. Doing so results in
B = 0 and any A, that is, in order to achieve R1 = 0.5,
we need R2 = 0 for MSWDF.

5) Comparison: We hope that this example demonstrates
the considerably suboptimality of MSWDF and CSWDF. The
major difference between our scheme and CSWDF, funda-
mentally, is that our scheme allows for “merging” of the
streams arriving at the relay from different sources, encoding
all streams within the same code. One main contribution of
this paper is to present a systematic way of designing such
“merging” in a delay-spectrum efficient manner, through the
framework provided by Lemma 3 and Corollary 1.

VI. RESULTS

In this section, we present the rate region for three different
scenarios. In all cases, the curves are labeled according to the
scheme presented in each respective section previously. The
curve labeled as “Time Sharing” in Fig 3 represents the best
achievable region for which we have closed form expres-
sions, which can be achieved by concatenating CSWDF and
FB-SWDF.

In the first scenario, we have a small T , such that the
condition in Corollary 3 is not met. This is presented in Fig. 3.
Note that, in this case, no scheme is able to achieve the
sumrate. In the second case, we have T = 5, and, by slightly
increasing T this way, our FB-SWDF and OB-SWDF schemes
are able to achieve the sumrate capacity in a noticeable part
of the capacity region, which is shown in Fig. 4. Further
increasing T increases the fraction of the sumrate capacity
that we are able to achieve, as shown in Fig. 5. It should
also be noted that, as T increases, the relative performance of

Fig. 3. Rate region for the weak relay-destination bottleneck regime
with parameters N1 = 3, N2 = 2, N3 = 1, T = 4, where R1 is
the rate of the first user and R2 is the rate of the second user. In the
figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-
and-forward, CSWDF to Concatenated Symbol-wise Decode-and-forward,
and CMWDF to Concatenated Message-Wise Decode-and-forward.

Fig. 4. Rate region for the weak relay-destination bottleneck regime
with parameters N1 = 3, N2 = 2, N3 = 1, T = 5, where R1 is
the rate of the first user and R2 is the rate of the second user. In the
figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-
and-forward, CSWDF to Concatenated Symbol-wise Decode-and-forward,
and CMWDF to Concatenated Message-Wise Decode-and-forward.

CMWDF worsens, and for T = 6 it is unable to achieve even
the single-user upper bound, which is also shown in [2].

In all cases, it can be seen that CSWDF is able to achieve
the best result for maximal R2 among the known achievable
schemes. This has been observed in all settings we have
experimented, although it remains to be proven. On the
other hand, for maximal R1, CSWDF is noticeably inferior,
and OB-SWDF can achieve a rate increase in the order of

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

874 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Fig. 5. Rate region for the weak relay-destination bottleneck regime
with parameters N1 = 3, N2 = 2, N3 = 1, T = 6, where R1 is
the rate of the first user and R2 is the rate of the second user. In the
figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-
and-forward, CSWDF to Concatenated Symbol-wise Decode-and-forward,
and CMWDF to Concatenated Message-Wise Decode-and-forward.

10 to 20% compared to CSWDF. Nonetheless, it suggests that
the “Time Sharing” scheme represents a good achievable rate,
for which we have closed form expressions. In fact, in Fig. 5
or Fig. 4, it achieves the same performance as OB-SWDF.

Although our schemes are unable to always achieve the
sumrate, and unable to achieve the whole rate region, compar-
ing them to the alternatives—CSWDF and CMWDF—should
show that the proposed schemes are significantly superior,
as they are able to achieve the sumrate under some set of
conditions that occur frequently, while the baselines are always
unable to achieve it in any non-trivial setting, and even in
cases where no scheme achieves the upper bound, ours offer
rate gains in the order of 10 to 20%. Furthermore, OB-SWDF
presents a single scheme that is able to achieve the highest
rates among known schemes, with no need for considering
different schemes.

VII. EXTENSION TO GENERAL PARAMETERS

In this section, we extend the previous achievability results
provided for the weak relay-destination bottleneck to the other
three regimes of operation. Thus, we provide achievable results
for any parameters N1, N2, N3 and T , as any choice of these
parameters results in one of the four defined regimes.

A. Strong Source-Relay Bottleneck

In this case, the converse region is entirely defined by

R1 ≤ C(T − N3, N1) (54)

R2 ≤ C(T − N3, N2) (55)

since the sumrate bound is never active. Furthermore, it is easy
to see that N2 ≥ N3 is required in such scenario, otherwise,

it is impossible for the condition for strong source-relay
bottleneck to hold (that is, otherwise we would be in the strong
relay-destination bottleneck).

In order to show that the entire rate region is achievable,
we state the following Lemma

Lemma 11: For the strong source-relay bottleneck regime,
there exists an (N1, N2, N3)-achievable code with the follow-
ing rate pair

R1 = C(T − N3, N1) (56)

R2 = C(T − N3, N2) (57)

Proof: This follows from Lemma 8 (Concatenated
Symbol-wise Decode-and-forward scheme), using A = B =
1. This will give us an (N1, N2, N3)-achievable code with
the following parameters: k1 = (T + 1 − N1 − N3), k2 =
(T + 1 − N2 − N3), n1 = n2 = (T + 1 − N3), n3 =
(T + 1 − N1) + (T + 1 − N2). Then, it remains to show
that n = n1 = n2 ≥ n3.

The proof is as follows: since N1 ≥ N2, we have

T + 1 − N1 − N3

T + 1 − N1
≤ T + 1 − N2 − N3

T + 1 − N2
. (58)

From (58), it follows that9

(T + 1 − N1 − N3) + (T + 1 − N2 − N3)
(T + 1 − N1) + (T + 1 − N2)

≥ T + 1 − N1 − N3

T + 1 − N1
. (59)

Further, from the strong source-relay bottleneck assumption,
we have

T + 1 − N1 − N3

T + 1 − N1

≥ (T + 1 − N3 − N1) + (T + 1 − N3 − N2)
T + 1 − N3

. (60)

It follows directly then that

(T + 1 − N1) + (T + 1 − N2) ≤ (T + 1 − N3). (61)

Now recall that, for A = B = 1, we have n1 = n2 = T +
1 − N3 and n3 = (T + 1 − N1) + (T + 1 − N2), therefore,
we completed the proof that n = n1 = n2 ≥ n3.

Furthermore, since each single-user capacity point is achiev-
able, by applying Lemma 7, it is easy to see that the entire
capacity rate region is achievable using CSWDF.

An example of such rate region is presented in Fig. 6, using
the parameters N1 = 9, N2 = 8, N3 = 1, T = 12. Note that,
while the proof we used for achievability uses the concatenated
symbol-wise scheme for simplicity, our proposed schemes are
also able to achieve the entire rate region, while MSWDF is
not guaranteed to.

9In (58), we have a
b
≥ c

d
. Then, we know that a

b
≥ a+c

b+d
≥ c

d
, where the

second inequality is used in order to derive (59). Note that this holds because
all terms are non-negative from assumption.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 875

Fig. 6. Capacity Rate Region for a strong source-relay bottleneck regime
with parameters N1 = 9, N2 = 8, N3 = 1, T = 12, where R1 is the
rate of the first user and R2 is the rate of the second user. In the figure,
FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-forward
scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-and-
forward, CSWDF to Concatenated Symbol-wise Decode-and-forward, and
CMWDF to Concatenated Message-Wise Decode-and-forward. All schemes
other than CMWDF are able to achieve the upper bound.

Fig. 7. Capacity Rate Region for a weak source-relay bottleneck regime
with parameters N1 = 20, N2 = 9, N3 = 1, T = 27, where R1 is
the rate of the first user and R2 is the rate of the second user. In the
figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-
and-forward, CSWDF to Concatenated Symbol-wise Decode-and-forward,
and CMWDF to Concatenated Message-Wise Decode-and-forward.

B. Weak Source-Relay Bottleneck

In this case, similar to before, the converse is reduced to

R1 ≤ C(T − N3, N1) (62)

R2 ≤ C(T − N3, N2). (63)

However, we may not be able to achieve the corner point (i.e.,
achieve this bound with equality). Nonetheless, all schemes
presented in our paper can be employed in this regime,
although the FB-SWDF scheme is certainly going to underper-
form if we choose to keep the chosen Rbn, as it is certainly not
achievable in this regime. We take this opportunity to highlight
the effectiveness of OB-SWDF, which again presents the best
achievability in Fig. 7 and Fig. 8.

Fig. 8. Capacity Rate Region for a weak source-relay bottleneck regime
with parameters N1 = 19, N2 = 14, N3 = 3, T = 30, where R1 is
the rate of the first user and R2 is the rate of the second user. In the
figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-
and-forward, CSWDF to Concatenated Symbol-wise Decode-and-forward,
and CMWDF to Concatenated Message-Wise Decode-and-forward.

Nonetheless, we can guarantee achievability of the entire
region under the following sufficient condition. If the con-
dition is not satisfied, it is unknown whether there exists a
scheme that achieves the upper bound or not.

Lemma 12: For a network in the weak source-relay bottle-
neck regime, if

T ≤ N1 + N2 − N3 − 1

then the entire rate region is achievable.
Proof: This follows directly from Lemma 8 with A =

B = 1. If the condition stated in the lemma holds, we are
able to achieve the corner point R1 = C(T − N3, N1) and
R2 = C(T −N3, N2), and, again, since the single-user points
are achievable, we can achieve the entire rate region.

Remark 9: The Lemma can be seen in the example figures.
In the first case, we have T = 27 ≤ 27 = N1 + N2 −N3 − 1,
and we can achieve the capacity region. In the second example,
we have T = 30 > 29 = N1 + N2 − N3 − 1, and we can not
achieve the capacity region.

C. Strong Relay-Destination Bottleneck

The condition for the network to be in this regime of
operation is that N3 ≥ N2. In this case, we have that the
converse is given by

R1 ≤ C(T − N3, N1) (64)

R1 + R2 ≤ C(T − N2, N3). (65)

We now show that both points are achieved with equality.
Lemma 13: In the strong relay-destination bottleneck

regime, the following rate pairs are achievable:

R1 = 0 (66)

R2 = C(T − N2, N3) (67)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

876 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Fig. 9. Capacity Rate Region for a strong relay-destination bottleneck
regime with parameters N1 = 3, N2 = 1, N3 = 2, T = 5, where
R1 is the rate of the first user and R2 is the rate of the second user. In the
figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-wise Decode-and-
forward scheme, OB-SWDF to Optimized-Bottleneck Symbol-wise Decode-
and-forward, CSWDF to Concatenated Symbol-wise Decode-and-forward,
and CMWDF to Concatenated Message-Wise Decode-and-forward. Note that
the line-style used for FB-SWDF and OB-SWDF is different from earlier
figures to improve clarity.

and

R1 = C(T − N3, N1) (68)

R2 = C(T − N2, N3) − C(T − N3, N1). (69)

Proof: The rate pair R1 = 0, R2 = C(T − N2, N3) is
achievable using the three-node network capacity-achieving
codes presented in [2], or, in other words, a single-user
capacity achieving code. The second rate pair can be easily
achieved using our FB-SWDF scheme. In order to see that,
recall that, from Corollary 3, if

(T +1−N3)(T +1−N1−N2) ≥ (T +1−N1−N3)(N2−N3).
(70)

then we have C(T − N2, N3) − C(T − N3, N1) ≤ R�
2

in Lemma 5. Furthermore, note that, from the strong
relay-destination bottleneck assumption, we have N3 ≥ N2,
therefore N2 − N3 ≤ 0, thus the right-hand side of the
inequality is always negative. On the other hand, the left-hand
side is always positive, as T ≥ N1 + N3 (otherwise we have
R1 = 0 and this degenerates to a single-user setting).

It then easily follows that the entire capacity region is
achievable from Lemma 7.

An example of such rate region is presented in Fig. 9. Note
that neither the concatenated symbol-wise decode-and-forward
or the concatenated message-wise decode-and-forward are able
to achieve the entire capacity region, while our proposed
scheme is able to, and further note that the rate improvement
in the maximal R1 point is in the order of 100% increase in
the rate of the second user.

Fig. 10. Maximal sumrate as a function of N1 for N2 = 5, N3 = 1,
T = 20. In the figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-
wise Decode-and-forward scheme, OB-SWDF to Optimized-Bottleneck
Symbol-wise Decode-and-forward, CSWDF to Concatenated Symbol-wise
Decode-and-forward, and CMWDF to Concatenated Message-Wise Decode-
and-forward. The vertical black line represents changing the regime from weak
relay-destination bottleneck (left) to weak source-relay bottleneck (right).

D. Trends

Now that all regimes of operation have been presented, and
achievable results have been proposed, we wish to understand
how each scheme behaves as the parameters change. In order
to do so, let us define W � T + 1, and let us assume N1 =
αW , N2 = βW , N3 = γW . Then, all the results presented in
this paper are functions only10 of α, β and γ, which represent
the fractions of erasures that occur in the window of length
W in each link. Therefore, it suffices to fix a large enough
W , and vary N1, N2 and N3.

In order to present the information, we consider the max-
imal sum rate achieved by each scheme. In all experiments,
we consider T = 20.

We first set N2 = 5, N3 = 1, and vary N1 from 5 up to 19.
In Fig. 10, it can be noted that, while α (or N1) is sufficiently
small (or, relatively, T is sufficiently large), FB-SWDF can
achieve the sumrate in the weak relay-destination, and so can
OB-SWDF. On the other hand, CSWDF is only able to achieve
it for N1 = N2, and then the gap from CSWDF to the sumrate
increases. When the regime changes to source-relay bottleneck
(indicated by a vertical black line), CSWDF is eventually
able to achieve the sumrate, and FB-SWDF underperforms,
since it is not designed to handle this regime. In all cases,
OB-SWDF achieves at least the best performance between the
two. We note that, because the sumrate bound is only defined
by N2 and N3 in the relay-destination bottleneck, increasing
N1 does not decrease it. We repeat the same experiment for
N2 = 10, N3 = 7. In Fig. 11, it can be seen that no scheme is
able to achieve the upper bound after the trivial case N1 = N2.
Nonetheless, both of our schemes achieve higher rates than the
baseline.

10Note that α ≥ β, since N1 ≥ N2, and the values of α, β and γ must be
such that the number of erasures is integer.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 877

Fig. 11. Maximal sumrate as a function of N1 for N2 = 10, N3 = 7,
T = 20. In the figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-
wise Decode-and-forward scheme, OB-SWDF to Optimized-Bottleneck
Symbol-wise Decode-and-forward, CSWDF to Concatenated Symbol-wise
Decode-and-forward, and CMWDF to Concatenated Message-Wise Decode-
and-forward. The vertical black line represents changing the regime from weak
relay-destination bottleneck (left) to weak source-relay bottleneck (right).

We then wish to consider the effect of β, or N2. However,
recall that we assumed N1 ≥ N2 throughout the paper.
We consider N1 = 15 and N3 = 4. This choice allows us to
demonstrate all regimes of operation. In Fig. 12, for low values
of N2, we are in the strong relay-destination bottleneck, that is,
we have N3 ≥ N2. In this case, achieving the sumrate is trivial,
as it can be achieved by setting R1 = 0 and using a capacity-
achieving single-user code for the second user. We then move
into the weak relay-destination bottleneck, and CSWDF is
unable to achieve the sumrate, while our schemes are able to
achieve it for some range of N2. In the weak source-relay
bottleneck regime, again FB-SWDF performance degrades
quickly, as it is not designed for this regime, but OB-SWDF
still outperforms all other schemes. Then, as N2 increases, or,
in other words, T decreases relative to the number of erasures,
the sumrate becomes again achievable by both CSWDF and
OB-SWDF, as prescribed by Lemma 12. Finally, in the strong
source-relay bottleneck, all schemes are again able to achieve
the sumrate.

The results as function of N3 are similar, and mostly depend
on the choice of N1 and N2 and in which regime of operation
we are, and therefore are not presented.

Remark 10: Although we focus on the maximum sumrate
analysis for simplicity and presentation, the same analysis can
be performed for different points of operation. For example,
if one is concerned about “fairness”, intuitively the point R1 =
0 is “unfair”, and this is the point for maximal sumrate in
the strong relay-destination bottleneck regime for CSWDF in
Fig. 12 (see Fig. 9 for comparison), and we would be interested
in points where the rates are closer to each other.

VIII. COMMENTS AND LIMITATIONS

In this section we wish to make some comments about our
results, acknowledge a few limitations and discuss future work.

Fig. 12. Maximal sumrate as a function of N2 for N1 = 15, N3 = 4,
T = 20. In the figure, FB-SWDF refers to the Fixed-Bottleneck Symbol-
wise Decode-and-forward scheme, OB-SWDF to Optimized-Bottleneck
Symbol-wise Decode-and-forward, CSWDF to Concatenated Symbol-wise
Decode-and-forward, and CMWDF to Concatenated Message-Wise Decode-
and-forward. The first vertical black line represents the transition from
strong relay-destination bottleneck (left) to weak relay-destination bottleneck
(right). Then, the second vertical line represents the transition from weak
relay-destination bottleneck to weak source-relay bottleneck. The last vertical
line represents the transition from weak source-relay bottleneck to strong
source-relay bottleneck.

One comment to be made about our results is about the
asymptotic optimality. For a sufficiently large T , or equiv-
alently, a small fraction of erasures within a window, it is
easy to see that the condition on Corollary 3 is always met11,
as the left hand side grows with T 2, while the right hand side
grows with T . Furthermore, the upper corner point tends to
degenerate to the single-user scenario with T → ∞, as can
be seen from the upper bound and from Lemma 9. Therefore,
with T → ∞, the capacity region is entirely achievable.

We also should mention that the proposed upper bound is
optimistic, and implicitly assumes the first user is subject to
N2 erasures instead of N1 ≥ N2 erasures when computing
the sumrate bound. This is a possible reason for the gap
between our achievable result and the bound, especially in
the region where the first user transmits at a rate close to
its single-user rate. Improving the bound by considering both
N1 and N2 when computing the sumrate is an interesting
and challenging work. Nonetheless, it is surprising that even
such an optimistic bound can be achieved for a large set of
parameters and rate pairs of interest, as shown by our results.

In terms of the presented schemes, our OB-SWDF presents
two limitations: one is that the results are numerical, thus
no performance guarantees are given. However, one may
construct the optimization in such a way that it certainly
passes through the rates achieved by FB-SWDF and CSWDF,
guaranteeing an outperformance of these schemes. The second

11In practice, for small values of Ni, which are desired in order to achieve
low latency, the condition is met rather quickly (See, e.g. Fig. 5), even for
a T slightly larger than the minimum N1 + N3. We present the asymptotic
analysis for completeness.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

878 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

limitation is that the choice of n in order to obtain the best
possible performance might be very large (e.g. n ≥ 2000)
and impractical for the applications which are the target of
low latency streaming codes. This is highly dependent on the
channel parameters. However, experimental results show that
one may achieve rates close to the presented in our results
even with a significantly smaller choice of n.

Another limitation is that we focus on time-invariant codes,
and, more specifically, our relaying strategy does not exploit
the knowledge of the erasures from source to relay. This
constraint on the streaming codes reduces the capacity. How-
ever, this is justified by practical limitations on the relay’s
processing capabilities, as well as by allowing no-overhead
transmission. Nonetheless, it is possible that the use of
adaptive schemes may allow for better performance in the
multi-access setting and it is considered as future work.

Finally, it should be noted that while we focus our analysis
on the uplink, our framework is fairly symmetrical and can be
simply generalized to the downlink, in which a source wishes
to transmit different messages to different destinations through
a relay (assuming wired connections between nodes). This
is especially useful since many applications, such as cloud
gaming, involve two-way communication.

IX. CONCLUSION

In this paper, we have presented an in-depth analysis of
achievability using symbol-wise decode-and-forward. We have
derived the condition for which the sumrate is achievable, and,
when it is, what part of the whole rate region is achievable.
Furthermore, we have compared the proposed schemes to
concatenated message-wise decode-and-forward, which is the
naive solution to the problem, and the performance of our
scheme is clearly superior. It should also be noted that,
while the analysis in this paper is restricted to 2 users, the
tools and schemes presented can be easily extended to any
number of users, and the achievable rates can easily be solved
numerically, although analysis of the closed-form expressions
become increasingly hard to derive.

For future works, the gap between achievability and con-
verse should be tightened. It is likely that the current converse
is optimistic, and new converse-deriving techniques are neces-
sary in order to obtain better results. It is also unclear whether
employing a different (than symbol-wise decode-and-forward)
strategy in the relay can improve the achievable results, and
an analysis based on information rates could be helpful.

APPENDIX

Proof of Theorem 1: The bounds on R1 and R2 are
direct extensions from [2] and do not require the channel
state independent constraint. We present the proof for user 1.
The same steps can be applied to user 2. For user 1, because
each source packet must be recovered by the destination with
delay T , and a burst of N3 erasures may occur from relay to
destination, for every packet the following holds

H
�
st,1|({x(1)

t,1 , . . . , x
(1)
t+T−N3,1} \ {x(1)

θ1,1, . . . , x
(1)
θN1 ,1}),

{st�,1}t−1
t�=0

�
= 0 (71)

for any N1 non-negative integers denoted by θ1, . . . , θN1 .
It then follows that

H
�
{st�,1}T−N3+(j−1)(T+1−N3)

t�=0 |
�
x

(1)
i(T+1−N3),1,

x
(1)
1+i(T+1−N3),1, . . . , x

(1)
T−N1−N3+i(T+1−N3),1

�j

i=0

�
= 0 (72)

where the conditional entropy involves j(T + 1−N3) source
packets and (j +1)(T +1−N1−N3) encoded packets. Now,
note that (72) implies

n1(j + 1)(T + 1 − N1 − N3) (73)

≥H
�
{x(1)

i(T+1−N3),1,

x
(1)
1+i(T+1−N3),1, . . . , x

(1)
T−N1−N3+i(T+1−N3),1

}j
i=0

(74)

≥H({st�,1}T−N3+(j−1)(T+1−N3)
t�=0) (75)

=k1j(T + 1 − N3) (76)

which, by making j → ∞ (recall that it must hold for any
j), results in k1

n1
≤ T+1−N1−N3

T+1−N3
= C(T − N3, N1). Finally,

since n ≥ n1, from definition, it follows that R1 = k1
n ≤ k1

n1
,

completing the proof of the bound on R1.
As mentioned previously, the same argument holds for user

2, and therefore for R2, changing N1 to N2.
Now, we consider a similar argument for the relay-

destination link. Recall that both st,1 and st,2 must be recov-
ered by the destination at time t + T . Further, recall that
we assume N1 ≥ N2 without loss of generality, therefore,
a burst of N2 erasures may occur from time t up to time
t + N2 − 1 simultaneously in the links from both users to the
relay. Therefore, the following holds

H
�
st,1, st,2|({x(2)

t+N2
, . . . ,

x
(2)
t+T } \ {x(2)

φ1
, . . . , x

(2)
φN3

}), {{st�,i}t−1
t�=0}2

i=1

= 0. (77)

Now, let us understand why the argument fails if the relaying
scheme is allowed to change depending on the erasure patterns,
which was previously missed in [2]. Let us consider another
time instant t�. Similarly, st�,1 and st�,2 must be recovered by
the destination at time t�+T , and, as before, N2 erasures may
occur in both links from time t� up to t� + N2 − 1. However,
the relay can observe this different erasure pattern (before it
was from t up to t + N2 − 1, now it starts at t�), and adapt
its relaying strategy accordingly. Therefore, the output of the
relaying function will differ, and we can only write

H
�
st�,1, st�,2|({x�(2)

t�+N2
, . . . , x

�(2)
t�+T } \ {x�(2)

φ1
, . . . , x

�(2)
φN3

}),
{{st��,i}t�−1

t��=0}2
i=1

= 0. (78)

However, because x
�(2)
t
= x

(2)
t , (77) and (78) can not,

in general, be combined. That is, unlike in the source-relay
case, we can not get an equation similar to (72), because (77)
does not hold simultaneously for all t, only for one t for each
erasure pattern. Therefore, we must now use the assumption
that the code is channel state invariant, i.e., Definition 4,

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 879

and therefore x
�(2)
t = x

(2)
t for all t, because the relay is

not allowed to adapt to the different erasure patterns. It then
follows similarly that

H
�
{{st�,i}T−N2+(j−1)(T+1−N2)

t�=0 }2
i=1|{x(2)

i(T+1−N2),1
,

x
(2)
1+i(T+1−N2),1, . . . , x

(2)
T−N3−N2+i(T+1−N2),1

}j
i=0

= 0.

(79)

From (79), it then follows that

n3(j + 1)(T + 1 − N2 − N3) (80)

≥H
�
{x(2)

i(T+1−N2),1
,

x
(2)
1+i(T+1−N2),1, . . . , x

(2)
T−N3−N2+i(T+1−N2),1}j

i=0

(81)

≥H({{st�,i}T−N2+(j−1)(T+1−N2)
t�=0 }2

i=1) (82)

=(k1 + k2)j(T + 1 − N2). (83)

As before, by making j → ∞ and noting that n ≥ n3 from
definition, we get

R1 + R2 =
k1 + k2

n
(84)

≤k1 + k2

n3
(85)

≤T + 1 − N2 − N3

T + 1 − N2
(86)

=C(T − N2, N3) (87)

which completes the proof. �
Proof (Delay Spectrum of Symbol-Wise Decode-and-

Forward:) Let

s��t = [st−(T (1)[1])[1], st−(T (1)[2])[2], . . . , st−(T (1)[k])[k]] (88)

that is, s��t is the vector of symbols that are decoded at time t.
From assumption, the relay has access to this vector at time
t. The relay can then apply the permutation

s�t = πs��t (89)

and encode such sequence. Now, consider the jth symbol.
It has been recovered with a delay T (1)[j] by the relay, then it
has been permuted into the j� symbol and recovered with delay
T (2)[j�] by the destination. For all j and all permutations, the
destination has recovered the symbol by time T (1)[j]+T (2)[j�],
where j� is defined by the permutation.

That is, the delay spectrum of symbol-wise decode-and-
forward is given by T(1)+πT(2) where π is some permutation.
�

Proof of Lemma 1: Consider the concatenation code of
both codes. Since the first code is able to achieve delay
spectrum T� under N erasures, the first k� symbols can be
recovered certainly at times T�. Similarly, since the second
code achieves delay spectrum T�� under N erasures, the last
k�� symbols can be recovered certainly at times T��. Thus,
the concatenation code achieves the delay spectrum [T�,T��]
under N erasures. �

Proof of Lemma 2: This follows directly from the choice
of encoder. Let us denote by ft({sj}t

j=0 the encoding function

of a code that achieves delay spectrum T under N erasures.
Without loss of generality, let us analyze the first two source
symbols. This code is able to recover them by times T [1]
and T [2], respectively. Now, consider the code generated by
applying the function to s�, i.e., ft({s�j}t

j=0), where s� = πs.
Again without loss of generality, assume the permutation
swaps the first two positions. Then, s�[1] is now recovered
at time T [1], and s�[2] is recovered at time T [2]. However,
s�[1] = s[2], therefore, s[2] is recovered at time T [1], and
similarly for s[1].

It is easy to see that, in general, applying the desired
permutation over the source symbols before encoding results
in the desired permuted delay spectrum. Thus, if a code is able
to achieve delay spectrum T under N erasures, permuting the
source symbols and using the same code suffices to acheive
delay spectrum πT under N erasures. �

The following lemma has been proven in [2] and is useful
in the proof of Lemma 3.

Lemma 14: A systematic (N + k, k,T)F point-to-point
diagonally-interleaved MDS code [5] achieves the delay spec-
trum T = [N, . . . , N + k − 1] under N erasures.

Proof: Recall that we wish to construct a systematic
(n, k) code such that, under N erasures, k(g)[j] symbols are
recovered at time T (g)[j] and

k(g)[j] =

�
n − T (g)[1]

N (n − k), j = 1
n−k
N , j ≥ 2

. (90)

For the remaining of the proof, we denote k(g)[j] = n−k
N , i.e.,

we assume j ≥ 2.
Consider the following coding scheme: denote by m =

(T (g)[1]+1−N) the number of possible delays. We concate-

nate k(g)[1] = n− T (g)[1]
N (n− k) diagonally-interleaved MDS

codes with parameters (N + m, m) and k(g)[j] − k(g)[1] =
T (g)[1]+1

N (n−k)−n interleaving MDS codes with parameters
(N + m − 1, m − 1). Note that, since we are concatenating
systematic codes, the resulting code is systematic.

It follows directly from Lemma 14 and Lemma 1 that k(g)[1]
symbols are recovered with delay T (g)[1] and that k(g)[j]
symbols are recovered with every other delay (i.e., T (g)[j]).
From definition, we have k = k(g)[1] +

�m
j=2 k(g)[j], since

the number of possible delays is exactly m.
Therefore, it remains to show that the number of channel

uses this proposed code uses, which we will briefly denote as
n�, is the designed number of channel uses n.

The number of channel uses of this concatenation is, from
definition of concatenation, given by

n� =k(g)[1](N + m) + (N + m − 1)(k(g)[j] − k(g)[1]) (91)

= (N + m − 1)k(g)[j] + k(g)[1]
(a)
= Nk(g)[j] + k (92)

(b)
= (n − k) + k = n (93)

where (a) follows from k(g)[1] + (m − 1)k(g)[j] = k and (b)
follows from k(g)[j] = 1

N (n − k).
Now, note that this requires n−T [1]

N (n−k) and T [1]+1
N (n−k)

to be integer. Both are true from assumption. This is intuitive
from the construction: we are concatenating codes of the form

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

(N +k�, k�), that is, all the codes that composite the code have
exactly N parity symbols, thus the number of parity symbols
has to be some multiple of N .

Proof of Corollary 1: Let us build a code using Lemma 3
using a code with a k that satisfies the conditions on the
corollary, that is, a k such that

k ≤ n−n · N ·
�
1 −�j−1

�=1
kcon[�]

n

T (g)[j] + 1

∀j ∈ {1, 2, . . . , �(g)}
(94)

k ≤
�(g)�
�=1

kcon[�]. (95)

Then, let us analyze k(g)[1]. From Lemma 3, we have

k(g)[1] = n − T (g)[1]
N

(n − k) (96)

(a)

≤ n−T (g)[1]
N

⎛
⎝n−n + n · N ·

�
1 −�1

�=1
kcon[�]

n

T (g)[2] + 1

⎞
⎠

(97)

(b)
= n − T (g)[1]

N

⎛
⎝n · N ·

�
1 − kcon[1]

n

T (g)[1]

⎞
⎠ (98)

= kcon[1] (99)

where (a) follows from the fact that (94) holds for all j,
in particular, j = 2; (b) follows from T (g)[2] = T (g)[1] −
1 from construction in Lemma 3, and the final step is just
arithmetic simplification. Now, by repeating the same steps
for each j, we obtain that

j�
�=1

k(g)[�] ≤
j�

�=1

kcon[�]∀j. (100)

This is still different from what we desire, which is k(g)[�] ≤
kcon[�] for all �. However, note that, as � increases, the delay
is decreasing. Thus, it is trivial that one could “redistribute”
the delays by introducing artificial delay through buffering.
That is, we may, without affecting achievability, assume that
k(g)[�] = kcon[�] for any “small” �.

More formally, let us show that (100) implies k(g)[�] ≤
kcon[�]∀�. Let �� be the first � such that k(g)[��] > kcon[��].
Further, let us denote by δ(��) � k(g)[��]− kcon[��] > 0. How-

ever, from assumption (from (100)), we have
���

�=1 k(g)[�] ≤���

�=1 kcon[�], therefore,
���−1

�=1 kcon[�] − k(g)[�] ≥ δ(��).
We can, then, take δ(��) symbols which are transmitted with
delay T (g)[��], and “buffer” them, increasing the delay. We do
this in a way such that k(g)[�] ≤ kcon[�]∀� < �� still
holds. Note, again, that this is certainly possible, because���−1

�=1 kcon[�]−k(g)[�] ≥ δ(��), that is, there are enough “free”
symbols at higher delays. We now have k(g)[��] = kcon[��].

Therefore, if the conditions on the corollary statement hold,
then there exists a code such that k(g) ≤ kcon according to
Lemma 3. �

Proof of Lemma 4: First, recall that, in order to a delay
spectrum to be achievable under N erasures, the decoder must

Fig. 13. Periodic erasure pattern.

be able to recover the k(g)[j] information symbols at time
T (g)[j] with no ambiguity as long as the number of erasures
is at most N .

In order to prove the lemma, we make a counting argument
similar to [32] and [2]. The argument can be formalized in
terms of entropy, as seen in the mentioned papers. Consider
N erasures at the first N positions, and other N erasures after
time T (g)[j], as in Fig. 13.

More precisely, due to the systematic assumption, we have
the following condition

H(sN :T (g)[j]|xN :T (g)[j]) = 0

that is, the source packets at non-erased times must be fully
recoverable.

Without loss of generality, let us assume the symbols are
ordered with increasing delay, and let us denote by j� the first
symbol such that T [j�] = T (g)[j], that is, symbols from 1 up
to j� − 1 are allowed a delay higher than T (g)[j].. Then, since
all symbols with delays smaller than or equal to T (g)[j] must
be recoverable with delay at most T (g)[j], we also must have
that

H(s0:N−1|xN :T (g)[j], s0:N−1[1 : j� − 1]) = 0

that is, if we are given the symbols with higher delay for
the erased packets, then we must be able to fully recover the
erased packets using only the available information from x up
to time T (g)[j].

Then, we can write

T (g)[j]�
t=N

H(xt) +
N−1�
t=0

H(st[1 : j� − 1]) (101)

≥H(xN :T (g) , s0:N−1[1 : j� − 1]) (102)

=H(s0:T (g)) (103)

=
T (g)�
t=0

H(st). (104)

Finally, by noting that H(st) = k and H(xt) = n, and further

that k =
��(g)

j=1 k(g)[j], we can write

(T (g)[j] + 1 − N)n

≥ (T (g)[j] + 1)
�(g)�
�=j

k(g)[�] + (T (g)[j] + 1 − N)
j−1�
�=1

k(g)[�]

(105)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 881

where
�N−1

t=0 H(st[1 : j� − 1]) = N
�j−1

�=1 k(g)[�] follows
because the symbols are i.i.d. and the number of symbols from
1 to j� − 1 is exactly

�j−1
�=1 k(g)[�] from definition.

If this condition does not hold for some T (g)[j], there is
ambiguity in the recovery of the symbols and the information
of the k(g)[j] symbols can not be recovered by the deadline,
therefore, this delay spectrum is not achievable under N
erasures.

This condition can then be rewritten as

T (g)[j] ≥ N

�
1 −�j−1

�=1
k(g) [�]

n

�
1 −��(g)

�=1
k(g) [�]

n

 − 1. (106)

Now, recall that k =
��(g)

�=1 k(g)[�], then we have

T (g)[j] ≥ Nn

n − k

�
1 −

j−1�
�=1

k(g)[�]
n

�
− 1. (107)

The implicit assumption in the erasure pattern and the
deduction is that T (g)[j] ≥ T (g)[j +1] and T (g)[j +1]+N ≥
T (g)[j]. However, we can always set T (g)[j + 1] = T (g) − 1,
and simply have some kg[j] = 0, thus such assumption is not
a problem. �

Proof of Corollary 2: This follows immediately from rear-

ranging Lemma 4 and solving it for T (g)[2] = T (g)[1]−1 and

T (g)[�(g)] = N , with
��(g)

�=1 k(g)[�] = k − k(g)[�(g)]. �
Proof of Theorem 3: First, note that the delay spectrum

described is the same as the one in Lemma 3, therefore,
the achievable side of the statement (i.e., there exists a code
with this delay spectrum that achieves it under N erasures) is
completed. We now must show that this code is better than any
other code, i.e., (17) holds for any other code. More precisely,
we will use Proposition 1, which is a sufficient condition for
optimality.

Let us consider an arbitrary achievable delay spectrum k�(g).

Recall that
��(g)

�=1 k�(g)[�] = k. Then, let us rearrange (16) as
follows

T(g)[j] ≥ Nn

n − k

�
1 −

j−1�
�=1

k�(g)[�]
n

�
− 1 (108)

(T(g)[j] + 1)
n − k

N
≥ n−k +

�(g)�
�=j

k�(g)[�] (109)

�(g)�
�=j

k�(g)[�] ≤ (T(g)[j] + 1 − N)
n − k

N
. (110)

Now, let us solve this for j = �(g), �(g) − 1, . . . , 1. We get

k�(g)[�(g)] ≤ n − k

N
= k(g)[�(g)] (111)

k�(g)[�(g)] + k�(g)[�(g) − 1] ≤ 2
n− k

N
= k(g)[�(g)] + k(g)[�(g) − 1]

(112)
... (113)

�(g)�
�=2

k�(g)[�] ≤ (�(g) − 1)
n − k

N

=
�(g)�
�=2

k(g)[�]. (114)

This can be interpreted as follows: there is a maximum number
of symbols that can be transmitted with the best delay, that
is, there is a direct upper bound on k�(g)[�(g)], which is the
number of symbols transmitted with the lowest delay (i.e.,
N). Furthermore, note that transmitting less symbols with the
lowest delay only allows (at best) exactly that same number
of symbols (i.e., the difference between the bound and the
number of symbols transmitted) to be transmitted with worse
delays, therefore, if equality can be achieved, then it is optimal,
as the only choice is to transmit those symbols with a better
delay or not, and there is no reason to transmit with a worse
delay. Finally, we note that we stopped one short in (114).

This is because
��(g)

�=1 k�(g)[�] =
��(g)

�=1 k(g)[�] = k, thus
the equality holds trivially from definition. Therefore, from
Lemma 3, delay spectrum k(g) is achievable, and, as seen
above, it is optimal. �

Proof of Lemma 5: Let us consider using (T + 1 − N3)c
concatenations of a T+1−N3−N2

T+1−N2
interleaving MDS code in the

second hop and (T +1−N2)c concatenations of a T+1−N3−N1
T+1−N3

code in the first link. Finally, let us fix n = (T +1−N2)(T +
1 − N3)c. Note that, under such conditions, we achieve the
desired R1 from the assumption of the Lemma. The constant
c is an auxiliary constant that should satisfy that the number of
symbols in each timeslot is integer for all links. These choices
of code parameters are taken from the upper bound. Examples
of such codes can be found in Section V-D.2.

Under such conditions, it follows from Lemma 3 that the
delay spectrum of the second hop is uniform with (T+1−N3)c
symbols from N3 to T−N2, and the delay spectrum of the first
link is (T +1−N2)c symbols from N1 to T −N3. Therefore,
we have the following constraint on the second link

Gcon =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(T − N3, (N2 − N3)c)
(T − N3 − 1, (N2 − N3)c)

...
(N1, (N2 − N3)c)

(N1 + 1, (T + 1 − N3)c)
...

(N2, (T + 1 − N3)c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(115)

which follows from computing the number of symbols still
allowed to be transmitted with each delay from relay to
destination (i.e., that were not already used up by the first
user).

Under this constraint, applying Corollary 1, we have the
following conditions for achievability on the second link

k2 ≤n − nN2

T − N3 + 1
(116)

k2 ≤n − nN2(1 − (N2−N3)c
n)

(T − N3 − 1) + 1

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

882 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

k2 ≤n − nN2(1 − 2 (N2−N3)c
n)

(T − N3 − 2) + 1
...

k2 ≤n − nN2(1 − (T + 1 − N3 − N1)
(N2−N3)c

n)
N1

(117)

k2 ≤n −
�

nN2(1 − (T + 1 − N3 − N1)
(N2−N3)c

n

N1 − 1

−
(T+1−N3)c

n)
N1 − 1

�

k2 ≤n −
�

nN2(1 − (T + 1 − N3 − N1)
(N2−N3)c

n

N1 − 2

−2 (T+1−N3)c
n)

N1 − 2

�
...

k2 ≤n −
�

nN2(1 − (T + 1 − N3 − N1)
(N2−N3)c

n

N2

− (N1 − N2)
(T+1−N3)c

n)
N2

�
(118)

We note that equation (116) represents the single user upper
bound, that is, R2 ≤ C(T−N3, N2). Equation (118) represents
the sumrate bound, i.e., R1 + R2 ≤ C(T − N2, N3). While
there are many other constraints to be considered, we now
show that they are dominated by (117) and (118) when R1 =
C(T − N3, N1). In order to do that, let us first consider the
function

f(x) = n−n
N2(1−x (N2−N3)c

n)
(T − N3 − x) + 1

(119)

with derivative

f �(x) = −nN2

−

(N2−N3)c
n

(T − N3 − x) + 1

+
!

1−x
(N2 − N3)c

n

�
1

(T + 1 − N3 − x)2

	
. (120)

It can be shown that, for T ≥ 2N2 − N3 − 1 =
c1, this derivative is always negative. Further, recall that,
in order for the second hop to be the bottleneck (i.e.,
the scenario we are interested on), we require T ≥
1
2

��
N2

1 − 4N3(N2 − N3) + N1 + 2N2 − 2

= c2. It can be
shown that, for any N1 ≥ N2 ≥ N3, we have c2 ≥ c1, that is,
in our regime of operation, this derivative is always negative.
From this, it follows that (117) is the minimum among all
constraints from (116) to (117).

Similarly, we consider the function

g(x) = n

−nN2

1 − (T + 1 − N3 − N1)
(N2−N3)c

n −x (T+1−N3)c
n

N1 − x

(121)

with derivative

g�(x) = −nN2

−

(T+1−N3)c
n

N1 − x

+
1 − (T + 1 − N3 − N1)

(N2−N3)c
n −x (T+1−N3)c

n

(N1 − x)2

"
.

(122)

It can be shown that the derivative is negative if

(T+1−N3)(T+1−N2−N1)−(T+1−N3−N1)(N2−N3)≥0
(123)

and positive otherwise. That is, either the derivative is always
negative and (118) is the minimum, or the derivative is always
positive and (117) is the minimum. Dividing both sides by n
(in order to obtain R2 = k2/n) and then substituting n =
(T + 1 − N2)(T + 1 − N3)c in both equations completes the
proof. �

Proof of Corollary 3: This follows directly from the
condition for R�

2 ≥ C(T−N2, N3)−C(T −N3, N1) presented
in the proof for Lemma 5. �

Proof of Lemma 6: Consider the following scheme: in
the second hop, we use (T + 1 − N3)c concatenations of a
T+1−N3−N2

T+1−N2
code and the second link (of the first hop) uses

(T + 1 − N3)c concatenations of a T+1−N2−N2
T+1−N2

code. Note

that we have n2 = n3 = (T + 1 − N2)(T + 1 − N3)c. Then,
we use c(T + 1 − N3)(N2 − N3)/(T + 1 − N3 − N1) codes
of rate T+1−N1−N3

T+1−N3
in the first link. Again, c is an auxiliary

constant that should satisfy that the number of concatenations
is integer, e.g., c = (T + 1 − N1 − N3). Now, note that we
have

k2 = c(T + 1 − N2 − N2)(T + 1 − N3) (124)

k1 = c(T + 1 − N3)(N2 − N3) (125)

k = c(T + 1 − N3 − N2)(T + 1 − N3) (126)

and we have exactly k symbols being transmitted in the
bottleneck. Furthermore, it is easy to see that the delay
spectrum of these codes achieve the desired overall delay
under N1, N2 and N3 erasures. This is because the code used
in the second hop allows for (T + 1 − N3)c symbols to be
transmitted with delays {N2, N2+1, . . . , T −N3} by the users
in the first hop. The second user transmits (T + 1 − N3)c
symbols with each delay {N2, N2 +1, . . . , T −N2}. Thus, the
first user can transmit (T + 1 − N3)c symbols in each delay
{T − N2 + 1, T − N2 + 2, . . . , T − N3}, which is satisfied
by the delay spectrum of the code employed by the first user.
Then, it remains to find n = max(n1, n2). Note that if n = n2,
we achieve the sum capacity. Thus, the condition for achieving
the sum capacity is

c(T + 1 − N2)(T + 1 − N3 − N1) ≥
c(T + 1 − N3)(N2 − N3) (127)

Note that this condition is equivalent to the condition that
we achieve the sum capacity at some point (from Corollary 3).

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 883

Further, note that, if this condition holds, we have

R1 =
c(T + 1 − N3) ∗ (N2 − N3)
c(T + 1 − N2)(T + 1 − N3)

(128)

=
N2 − N3

T + 1 − N2
(129)

which completes the proof. �
Remark 11: Note that, if the condition for achievability of

the sum capacity holds, we have

N2 − N3

T + 1 − N2
≤ C(T − N3, N1) (130)

and

C(T − N2, N2) ≥ C(T − N2, N3) − C(T − N3, N1).
(131)

That is, the point that achieves the sum capacity in Lemma 6
is to the “left” and “up” in the rate region than the point
that achieves it in Lemma 5. In fact, this is the point with
highest R2 that can achieve the sum capacity using the family
of schemes we propose.

Proof of Theorem 2: For simplicity, let us consider a
code construction similar to the one used in Lemma 5.
As before, the relay employs (T +1−N3)c concatenations of

a T+1−N3−N2
T+1−N2

diagonally-interleaved MDS code in the second

hop. Similarly, let us also fix n = (T +1−N2)(T +1−N3)c.
The code construction for the first user is as follows: as in the
proof of Lemma 5, the first user employs multiple concate-
nations of a T+1−N3−N1

T+1−N3
diagonally-interleaved MDS code.

However, instead of employing (T +1−N2)c concatenations,
the user only employs R1n

T+1−N1−N3
concatenations. Note that,

if R1 = T+1−N1−N3
T+1−N3

, as in Lemma 5, both codes coincide.
The delay spectrum of this code is uniform, with R1n

T+1−N1−N3

symbols transmitted with each delay {N1, N1 + 1, . . . , T −
N3}. We denote by Rbn = C(T − N3, N2) = T+1−N3−N2

T+1−N2
.

When the first user employs this code, as opposed to the one in
Lemma 5, the constraints to the code employed by the second
user change to

k2 ≤ n − nN2

T − N3 + 1
(132)

k2 ≤ n − nN2(1 − Rbn
1

T+1−N2−N3
+ R1

1
T+1−N1−N3

)
(T − N3 − 1) + 1

k2 ≤ n − nN2(1 − Rbn
2

T+1−N2−N3
+ R1

2
T+1−N1−N3

)
(T − N3 − 2) + 1

...

k2 ≤ n − nN2(1 − Rbn
T+1−N1−N3
T+1−N2−N3

+ R1
T+1−N1−N3
T+1−N1−N3

)
N1

(133)

k2 ≤ n −
�

nN2(1 − Rbn
T+1−N1−N3
T+1−N2−N3

N1 − 1

+
R1

T+1−N1−N3
T+1−N1−N3

) − (T+1−N3)c
n

N1 − 1

�

k2 ≤ n −
�

nN2(1 − Rbn
T+1−N1−N3
T+1−N2−N3

N1 − 2

+
R1

T+1−N1−N3
T+1−N1−N3

) − 2 (T+1−N3)c
n

N1 − 2

�
...

k2 ≤ n −
�

nN2(1 − Rbn
T+1−N1−N3
T+1−N2−N3

N2

+
R1

T+1−N1−N3
T+1−N1−N3

) − (N1 − N2)
(T+1−N3)c

n

N2

�
(134)

Similar to before, let us consider the function

f(x) = n−nN2

1 − Rbn
x

T+1−N2−N3
+ R1

x
T+1−N1−N3

(T − N3−x + 1)
(135)

with derivative

f �(x) = −nN2

R1

T+1−N1−N3
− Rbn

T+1−N2−N3

T + 1 − N3 − x
+�

1 − xRbn

T+1−N2−N3
+ xR1

T+1−N1−N3

(T + 1 − N3 − x)2

⎤
⎦ . (136)

Then, note that

f �(x) ≤ 0 ⇒�!
R1(T + 1 − N3)
T + 1 − N1 − N3

− (T + 1 − N3)
T + 1 − N2

�
+ 1

	
≥ 0. (137)

That is, for any set of parameters and R1, this derivative is
always positive or always negative, thus, the minimum of all
expressions between (132) and (133) is always in the extremes,
i.e., one of these two expressions.

Similarly, let us consider the function

g(x) = n −
�

nN2(1 − Rbn
T+1−N1−N3
T+1−N2−N3

N1 − x

+
R1

T+1−N1−N3
T+1−N1−N3

− x (T+1−N3)c
n)

N1 − x

�
(138)

with derivative

g�(x) = −nN2

−

(T+1−N3)c
n

N1 − x

+
(1 − Rbn

T+1−N1−N3
T+1−N2−N3

(N1 − x)2

+
R1

T+1−N1−N3
T+1−N1−N3

− x (T+1−N3)c
n)

(N1 − x)2

"
. (139)

And again, note that

g�(x) ≤ 0 ⇒�
1 − T + 1 − 2N1 − N3

T + 1 − N2
+ R1

T + 1 − N1 − N3

T + 1 − N1 − N3

	
≥ 0.

(140)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

That is, again, the derivative is always negative or always
positive depending on the set of parameters and R1, which
means the minimum of all expressions between (133) and
(134) lies in the extreme points, i.e., one of these two
expressions. Therefore, it suffices to take only these three
points into consideration. Finding R2 = k2/n and subtituting
n = (T + 1 − N3)(T + 1 − N2)c completes the proof. �

Proof of Lemma 7: The proof follows directly from
concatenating the two streaming codes used. More specifically,
the first user concatenates A copies of the (n1, k1) code with
B copies of the (n�

1, k
�
1) code, the second users concatenates

A copies of the (n2, k2) code with B copies of the (n�
2, k

�
2)

code, and the relay concatenates A copies of the (n3, k1 +k2)
code with B copies of the (n�

3, k
�
1 + k�

2) code. Then, from
the fact that these codes are able to achieve delay T under
(N1, N2, N3) erasures, it follows from Lemma 1 that the
concatenation of these codes is also able to achieve delay T
under (N1, N2, N3) erasures. �

Proof of Lemma 9: This follows directly from applying
Lemma 7 to the streaming codes described for the CSWDF,
that is

(T + 1 − N3, 0, T + 1 − N1, T + 1 − N1 − N3, 0)F (141)

(0, T + 1 − N3, T + 1 − N2, 0, T + 1 − N2 − N3)F (142)

Specifically, we use A = N2 − N3 and B = T + 1 − N1,
therefore, we have a streaming code certain to achieve the
required delay, with parameters

k1 = (N2 − N3)(T + 1 − N1 − N3) (143)

n1 = (N2 − N3)(T + 1 − N3) (144)

k2 = (T + 1 − N1)(T + 1 − N2 − N3) (145)

n2 = (T + 1 − N1)(T + 1 − N3) (146)

n3 = (N2 − N3)(T + 1 − N1) + (T + 1 − N1)(T +1−N2).
(147)

Then, it remains to find n and the respective rates. Note that

n3 = (T + 1 − N1)(T + 1 − N3) = n2. (148)

Finally, we need to show that

T + 1 − N1 ≥ N2 − N3 (149)

which implies n3 ≥ n1. The proof is as follows: recall that
we assume

T ≥ 1
2

!#
N2

1 − 4N3(N2 − N3) + N1 + 2N2 − 2
�

thus, it suffices to show that this assumption implies that the
above condition holds. We start by computing

1
2

!#
N2

1 − 4N3(N2 − N3) + N1 + 2N2 − 2
�

− (N1 + N2 − N3 − 1)

=
1
2

!#
N2

1 − 4N3(N2 − N3) − N1 + 2N3

�
. (150)

In order to have T + 1−N1 ≥ N2 −N3 guaranteed, we need
this expression to be greater than zero, or!#

N2
1 − 4N3(N2 − N3)

�
≥ N1 − 2N3. (151)

Now, note that, if N1 − 2N3 ≤ 0, then this condition holds.
If N1 − 2N3 ≥ 0, then we can rewrite the condition as

N2
1 − 4N3(N2 − N3) ≥ N2

1 − 4N1N3 + 4N2
3 (152)

−4N3N2 ≥ −4N1N3 (153)

N1N3 ≥ N2N3 (154)

N1 ≥ N2. (155)

Finally, recall that this is also an assumption, therefore, in this
regime of operation, we always have n = n3 = n2 ≥ n1.
Finally, we can compute the rates

R1 =
(N2 − N3)(T + 1 − N1 − N3)
(T + 1 − N1)(T + 1 − N3)

(156)

R2 =
(T + 1 − N1)(T + 1 − N2 − N3)

(T + 1 − N1)(T + 1 − N3)

=
T + 1 − N2 − N3

T + 1 − N3
= C(T − N3, N2) (157)

which are the rates described in the lemma. �
Proof (More Details on Proof of Lemma 12): This follows

directly from the fact that, under such condition, we can use
the same scheme used for the strong source-relay bottleneck,
that is, a simple CSWDF with one concatenation of each
single-user capacity-achieving code (i.e. A = B = 1). In that
case, we have, as before, n3 = (T + 1−N1)+ (T + 1−N2),
and n1 = n2 = T +1−N3. Then, if n1 ≥ n3, we achieve the
capacity, since the rates will be R1 = k1/n1 = C(T−N3, N1)
and R2 = k2/n2 = C(T − N3, N2). To complete the proof,
it is sufficient to notice that the condition in the Lemma is
exactly the condition for n1 ≥ n3. �

REFERENCES

[1] G. K. Facenda, E. Domanovitz, A. Khisti, W.-T. Tan, and
J. Apostolopoulos, “Streaming erasure codes over multi-access relay
networks,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 724–729.

[2] S. L. Fong, A. Khisti, B. Li, W.-T. Tan, X. Zhu, and J. Apostolopoulos,
“Optimal streaming erasure codes over the three-node relay network,”
IEEE Trans. Inf. Theory, vol. 66, no. 5, pp. 2696–2712, May 2020.

[3] E. Martinian and C. E. W. Sundberg, “Burst erasure correction codes
with low decoding delay,” IEEE Trans. Inf. Theory, vol. 50, no. 10,
pp. 2494–2502, Oct. 2004.

[4] D. Leong and T. Ho, “Erasure coding for real-time streaming,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 289–293.

[5] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Streaming codes
for channels with burst and isolated erasures,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 2850–2858.

[6] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” in Proc. Annu. Allerton Conf. Commun. Control
Comput., vol. 41, no. 1, 2003, pp. 11–20.

[7] G. Joshi, Y. Kochman, and G. W. Wornell, “On playback delay in stream-
ing communication,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2012,
pp. 2856–2860.

[8] M. Karzand, D. J. Leith, J. Cloud, and M. Médard, “Design of FEC
for low delay in 5G,” IEEE J. Sel. Areas Commun., vol. 35, no. 8,
pp. 1783–1793, Aug. 2017.

[9] A. Badr, P. Patil, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Layered
constructions for low-delay streaming codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 1, pp. 111–141, Jan. 2017.

[10] A. Badr, A. Khisti, W.-T. Tan, X. Zhu, and J. Apostolopoulos, “FEC
for VoIP using dual-delay streaming codes,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., May 2017, pp. 1–9.

[11] M. Rudow and K. V. Rashmi, “Streaming codes for variable-size
arrivals,” in Proc. 56th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Oct. 2018, pp. 733–740.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

FACENDA et al.: STREAMING ERASURE CODES OVER MULTI-ACCESS RELAYED NETWORKS 885

[12] M. N. Krishnan and P. V. Kumar, “Rate-optimal streaming codes for
channels with burst and isolated erasures,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2018, pp. 1809–1813.

[13] S. L. Fong, A. Khisti, B. Li, W.-T. Tan, X. Zhu, and J. Apostolopoulos,
“Optimal streaming codes for channels with burst and arbitrary era-
sures,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4274–4292, Jul. 2019.

[14] E. Domanovitz, S. L. Fong, and A. Khisti, “An explicit rate-optimal
streaming code for channels with burst and arbitrary erasures,” IEEE
Trans. Inf. Theory, vol. 68, no. 1, pp. 47–65, Jan. 2022.

[15] M. N. Krishnan, D. Shukla, and P. V. Kumar, “Low field-size, rate-
optimal streaming codes for channels with burst and random erasures,”
IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4869–4891, Aug. 2020.

[16] E. Domanovitz, A. Khisti, W.-T. Tan, X. Zhu, and J. Apostolopou-
los, “Streaming erasure codes over multi-hop relay network,” 2020,
arXiv:2006.05951.

[17] M. N. Krishnan, G. K. Facenda, E. Domanovitz, A. Khisti, W.-T. Tan,
and J. Apostolopoulos, “High rate streaming codes over the three-node
relay network,” in Proc. IEEE Inf. Theory Workshop (ITW), Oct. 2021,
pp. 1–6.

[18] A. Cohen, G. Thiran, V. Bar Bracha, and M. Médard, “Adaptive causal
network coding with feedback for multipath multi-hop communications,”
IEEE Trans. Commun., vol. 69, no. 2, pp. 766–785, Feb. 2021.

[19] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in
the clouds: QoE and the users’ perspective,” Math. Comput. Model.,
vol. 57, nos. 11–12, pp. 2883–2894, Jun. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0895717711007771

[20] P. Quax, A. Beznosyk, W. Vanmontfort, R. Marx, and W. Lamotte,
“An evaluation of the impact of game genre on user experience in cloud
gaming,” in Proc. IEEE Int. Games Innov. Conf. (IGIC), Sep. 2013,
pp. 216–221.

[21] V. Clincy and B. Wilgor, “Subjective evaluation of latency and packet
loss in a cloud-based game,” in Proc. 10th Int. Conf. Inf. Technol., New
Generat., Apr. 2013, pp. 473–476.

[22] M. Claypool and D. Finkel, “The effects of latency on player perfor-
mance in cloud-based games,” in Proc. 13th Annu. Workshop Netw. Syst.
Support Games, Dec. 2014, pp. 1–6.

[23] I. Slivar, M. Suznjevic, L. Skorin-Kapov, and M. Matijasevic, “Empirical
QoE study of in-home streaming of online games,” in Proc. 13th Annu.
Workshop Netw. Syst. Support Games, Dec. 2014, pp. 1–6.

[24] Z.-Y. Wen and H.-F. Hsiao, “QoE-driven performance analysis of cloud
gaming services,” in Proc. IEEE 16th Int. Workshop Multimedia Signal
Process. (MMSP), Sep. 2014, pp. 1–6.

[25] S. Schmidt, S. Zadtootaghaj, and S. Moller, “Towards the delay sen-
sitivity of games: There is more than genres,” in Proc. 9th Int. Conf.
Quality Multimedia Exper. (QoMEX), May 2017, pp. 1–6.

[26] P. Maynard-Koran. (Feb. 2016). Fixing the Internet for Real Time
Applications. [Online]. Available: https://technology.riotgames.com/
news/fixing-internet-real-time-applications-part-ii

[27] G. Hains, C. Mazur, J. Ayers, J. Humphrey, Y. Khmelevsky, and
T. Sutherland, “The WTFast’s gamers private network (GPN) perfor-
mance evaluation results,” in Proc. IEEE Int. Syst. Conf. (SysCon),
Aug. 2020, pp. 1–6.

[28] K. Lee et al., “Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming,” in Proc. 13th Annu.
Int. Conf. Mobile Syst., Appl., Services (MobiSys). New York, NY,
USA: Association for Computing Machinery, 2015, pp. 151–165, doi:
10.1145/2742647.2742656.

[29] I. Slivar, M. Suznjevic, and L. Skorin-Kapov, “The impact of video
encoding parameters and game type on QoE for cloud gaming: A case
study using the steam platform,” in Proc. 7th Int. Workshop Quality
Multimedia Exper. (QoMEX), May 2015, pp. 1–6.

[30] M. Carrascosa and B. Bellalta, “Cloud-gaming: Analysis of
Google stadia traffic,” Comput. Commun., vol. 188, pp. 99–116,
Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0140366422000810

[31] I. Slivar, L. Skorin-Kapov, and M. Suznjevic, “QoE-aware resource
allocation for multiple cloud gaming users sharing a bottleneck link,”
in Proc. 22nd Conf. Innov. Clouds, Internet Netw. Workshops (ICIN),
Feb. 2019, pp. 118–123.

[32] A. Badr, D. Lui, A. Khisti, W.-T. Tan, X. Zhu, and J. Apostolopoulos,
“Multiplexed coding for multiple streams with different decoding
delays,” IEEE Trans. Inf. Theory, vol. 64, no. 6, pp. 4365–4378,
Jun. 2018.

Gustavo Kasper Facenda (Graduate Student Member, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineering from the Federal Uni-
versity of Santa Catarina (UFSC), Florianópolis, Brazil, in 2017 and 2019,
respectively. He is currently pursuing the Ph.D. degree with the University of
Toronto, Toronto, ON, Canada. His research interests include information the-
ory and its applications, such as multiple access channels, relay networks and
streaming codes, and applications of machine learning in coding construction,
encoding, and decoding.

Elad Domanovitz (Member, IEEE) received the B.Sc. (cum laude), M.Sc.,
and Ph.D. degrees in electrical engineering from Tel Aviv University, Israel,
in 2005, 2011, and 2020, respectively. This work was done as part of a
Post-Doctoral Fellowship with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada. His research
interests include information theory, communication theory, and statistical
signal processing.

Ashish Khisti (Member, IEEE) received the B.A.Sc. degree from the Engi-
neering Science Program, University of Toronto, in 2002, and the master’s and
Ph.D. degrees from the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA,
in 2004 and 2008, respectively. Since 2009, he has been on the Faculty with
the Electrical and Computer Engineering (ECE) Department, University of
Toronto, where he was an Assistant Professor from 2009 to 2015, and an
Associate Professor from 2015 to 2019, where he is currently a Full Professor.
He also holds the Canada Research Chair of information theory with the ECE
Department. His current research interests include theory and applications
of machine learning and communication networks. He is also interested in
interdisciplinary research involving engineering and healthcare.

Wai-Tian Tan received the B.S. degree in electrical engineering from
Brown University, the M.S. degree in electrical engineering from Stanford
University, and the Ph.D. degree in electrical engineering from UC Berkeley.
He works in the general area of multimedia networking, systems for video
communications, and wireless networking. He was a Principal Engineer in
Enterprise Networking Business with Cisco, and worked with Hewlett Packard
Laboratories, Palo Alto, before joining Cisco.

John Apostolopoulos (Fellow, IEEE) received the B.S., M.S., and Ph.D.
degrees from the MIT. He was a VP/CTO of Cisco’s Intent Based Networking
Group (Cisco’s largest business), and also founded Cisco’s Innovation Labs.
He was a Consulting Associate Professor of EE at Stanford University. His
coverage included wireless (Wi-Fi 6, 5G, OpenRoaming), the Internet of
Things, multimedia networking, software-defined WAN, and ML/AI applied
to the above. Previously, he was a Distinguished Technologist, and then
the Laboratory Director of the Mobile & Immersive Experience (MIX)
Laboratory, HP Labs. The MIX Laboratory conducted research on novel
mobile devices and sensing, mobile client/cloud multimedia computing,
immersive environments, video and audio signal processing, computer vision
and graphics, multimedia networking, glasses-free 3D, wireless, and user
experience design. He published over 100 articles, receiving five best paper
awards, and over 100 granted U.S. patents. He is an IEEE SPS Distinguished
Lecturer, named “one of the world’s top 100 young innovators” by MIT
Technology Review, contributed to the U.S. Digital TV Standard (Engineering
Emmy Award), and his work on media transcoding in the middle of a network
while preserving end-to-end security (secure transcoding) was adopted in the
JPSEC standard.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 16,2023 at 00:42:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2742647.2742656

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

